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Abstract

We apply Support Vector Machines (SVMs) to parity games resulting from Linear tem-
poral logic (LTL) synthesis in order to predict a winning strategy for the games. The
thesis builds on recent advances in the field of translations from LTL to Deterministic
Parity Automatons (DPAs). These translations allow to store semantic information re-
garding the LTL formula in the states of the game resulting from the DPA. Namely,
we focus on the translation described in [25][6], which uses a Limit Deterministic Büchi
Automaton (LDBA) as intermediate step. Each state of a game resulting from this trans-
lation consists of a list of monitors keeping track of a subgoal of the original formula.
The goal is to fulfill one of the monitors infinitely often.
We follow four main ways to improve the performance of a SVM on such a game:

Firstly, we present different ways to combine features computed on the monitors of a
state, resulting in a fixed number of features describing the state. Secondly, we introduce
new features that utilize the internal structure of a monitor. Thirdly, we separate the
learning data into different classes based on the meaning of a state. These classes are
then used to train different SVMs on each of them. Lastly, we present a way to detect
states for which there is a simple winning strategy. This is based on a computation of a
set of system propositions, which would fulfill the formula, if it was played all the time.
The combination of the above approaches allows a prediction of winning strategies

for the named translation, which yields similar results to the paper [1], which builds
upon a translation from LTL to DPAs using a Deterministic Rabin Automaton (DRA)
as intermediate step.
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1 Introduction

In the reactive synthesis problem, one is given a specification over the input and output
of a system. The goal is to find a strategy producing a stream of outputs for each stream
of inputs, such that the specification is met. We consider the problem of LTL synthesis,
where the specification is given as a formula in Linear temporal logic (LTL). The problem
can be solved using the automata-theoretic approach. To do this, the LTL formula is
translated into a Deterministic Parity Automaton (DPA). The winning condition of this
DPA defines a parity game between the system player and the environment player. The
environment player can control the input propositions and the system player the output
propositions. To solve the reactive synthesis problem, a winning strategy for the system
player is computed. In this thesis, we use a strategy iteration algorithm as described in
[28] [27] to accomplish this. If the initial strategy for the strategy iteration algorithm is
good, the runtime decreases. Therefore, this thesis aims to find a good initial strategy.
In contrast to Safra’s construction [22] for determinization of automata, recent ad-

vances in the translation from LTL to DPA [16][6] allow for storing semantical informa-
tion in the states of the DPA. Namely, each state consists of a master formula stating
the remaining goal to be fulfilled and keeping track of the finite part of the formula,
and possibly several monitors measuring the progress of the infinite part of the formula.
Each of the monitors contains a list of formulas, which, together, are enough to fulfill the
overall goal, if they hold. These information have been used in different ways in order
to find a winning strategy. Křetínský et al. defined a heuristic named trueness [13],
which measures, how close a master formula in a state is to being satisfied. They use
this heuristic to build an initial strategy. Furthermore, they implemented Q-Learning
on the game to construct winning strategies. A similar approach was followed by Backs
in [1]. He trained a Support Vector Machine (SVM) with the goal of predicting, if an
edge belongs to a winning strategy. In [1], he suggested different features for the edges
of a game, including the trueness of the master formula of the successor of an edge. All
of these features are defined on the edge itself or the master formulas of the two nodes
adjacent to the edge and none of them considers the monitors. A SVM trained on these
features can then be used to find the edge most likely to be part of a winning strategy
for each state of the game. From this information, an initial strategy is constructed,
which maps each state to the edge chosen by the SVM.
The approach presented in [1] was evaluated using the translation form LTL to DPA

described in [5][12][16]. It works well for safety and co-safety formulas. For safety
formulas, the goal is to avoid an event. Co-safety formulas, on the other hand, can be
seen as reachability of good events. However, on games constructed from other classes
of formulas, the suggested approach still achieves better results than trueness, but they
are not as good as on the safety and co-safety formulas.
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1 Introduction

Later on, Backs suggested in unpublished work, for which the code can be found in
[2], to consider the monitors, as well, and introduced new features for them. This work
is based on the translation from LTL to DPA described in [25] [6], because the monitors
resulting from it have more internal structure than the monitors from the previous
translation.
In this thesis, we propose different approaches to improve on the unpublished work.

In a first step we discuss different methods to receive a fixed number of values for each
state and feature based on the monitors, even though the number of monitors for a state
varies. Then, we introduce new features. Afterwards, we discuss different classes of
states and the results of a SVM trained not on all states, but only on the states of one
of these classes. The classes follow the idea, that some states focus on the finite part of
the formula, while other states keep track of the infinite goals. In a last step, we present
a heuristic to detect states, for which the winning strategy can be computed without
sending a request to a SVM.
The outline is as follows: chapter 2 contains the basic definitions and concepts needed

in the thesis. Chapter 3 then describes the different approaches made during the thesis.
The results are discussed in chapter 4. We end the thesis with a suggestion for future
work in chapter 5 and a conclusion in chapter 6.

Related Work

As already mentioned, this work is closely related to [13] and [1]. In both papers, different
learning approaches were applied to translations from LTL to DPA, which store semantic
information in the states of the game. These information are then used in order to find
a winning strategy. Since the thesis builds on the work of [1], it will be described in
more detail in section 2.5.
The literature also presents other ways to solve the reactive synthesis problem. In

[20], an algorithm exploiting the information for the translation described in [25] [6] is
presented. The labels of the nodes are used to construct a forward search algorithm.
This way, parts of the automaton do not need to be constructed.
On can also use Safra’s determinization [22] to construct a deterministic automaton

form a LTL formula. Afterwards, a winning strategy can be extracted from the deter-
ministic automaton. However, the runtime depends on the size of the automaton, so it is
crucial to keep it small. Since Safra’s construction is known to be inefficient in practice
[17], [11] suggests heuristics to improve it.
There are also other approaches, which avoid Safra’s construction. In the bounded

synthesis problem, only systems with a bounded number of states are considered. Ex-
amples can be found in [23], [10] and [4].
Furthermore, the LTL synthesis problem can be reduced to checking emptiness of

non-deterministic Büchi tree automata [18].
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2 Preliminaries

In this chapter we give basic definitions and briefly describe the different translations
from LTL to DPA needed for the thesis. Additionally, we give a more detailed explana-
tion of the reactive synthesis problem. Furthermore, part 2.5 contains a short discussion
of previous work done on the topic, which we use as a basis.

2.1 Basic Definitions
2.1.1 Linear Temporal Logic
For this thesis, we consider LTL formulas in negation normal form (NNF), because all
formulas occurring in the labels of the states are of this form. Similar to [5] and [25] we
define:

Definition 1. A LTL formula in negation normal form over the set of atomic proposi-
tions AP is given by the syntax:

ϕ ::= true|false|a|¬a|ϕ ∧ ϕ|ϕ ∨ ϕ|Xϕ|Fϕ|Gϕ|ϕUϕ|ϕWϕ|ϕRϕ|ϕMϕ (2.1)

where a ∈ AP .
An ω-word w is an infinite sequence of letters w[0]w[1].... The infinite suffix w[i][i+1]...

is denoted by wi. The semantics is inductively defined as follows:

w |= tt
w 6|= false
w |= a iff a ∈ w[0]
w |= ¬a iff a /∈ w[0]
w |= ϕ ∧ ψ iff w |= ϕ and w |= ψ

w |= ϕ ∨ ψ iff w |= ϕ or w |= ψ

w |= Xϕ iff w1 |= ϕ

w |= Fϕ iff ∃k.wk |= ϕ

w |= Gϕ iff ∀k.wk |= ϕ

w |= ϕUψ iff ∃k.wk |= ψ and ∀0 ≤ j < k.wj |= ϕ

w |= ϕWψ iff (∃k.wk |= ψ and ∀0 ≤ j < k.wj |= ϕ) or (∀k.wk |= ϕ)
w |= ϕMψ iff ∃k.wk |= ϕ and ∀0 ≤ j ≤ k.wj |= ψ

w |= ϕRψ iff (∃k.wk |= ϕ and ∀0 ≤ j ≤ k.wj |= ψ) or (∀k.wk |= ψ)

3



2 Preliminaries

The weak until operator W, the release operator R and the strong release operator
M can be transformed into equations using only F,G,U by the following equivalences:

ϕWψ ≡ (ϕUψ) ∨Gϕ

ϕRψ ≡ ψW(ψ ∧ ϕ) ≡ (ψU(ψ ∧ φ)) ∨Gψ

ϕMψ ≡ ψU(ψ ∧ ϕ)

2.1.2 Automata
For this thesis, we need four different types of atomata: Limit Deterministic Büchi Au-
tomaton (LDBA), Deterministic Rabin Automaton (DRA), Generalized Deterministic
Rabin Automaton (GDRA) and Deterministic Parity Automaton (DPA). Their defini-
tions can be found in this chapter.
A LDBA is one of the automata that can be used as intermediate step to transform a

LTL formula into a DPA. The definition of the LDBA is taken from [25].

Definition 2. A limit deterministic Büchi automaton is a tuple B = (Σ, Q, δ, q0, α)
with alphabet Σ, finite set of states Q, transition function δ : Q× Σ → 2Q, initial state
q0 ∈ Q and accepting condition α = {F1, ..., Fn} with Fi ⊆ T , where T = {(s, ν, t)|s ∈
Q, t ∈ δ(s, ν)} is the set of transitions in the automaton. Additionally, there must be a
partition Q = QN ]QD for the set of states Q fulfilling the following two conditions:
1. ∀q ∈ QD, ν ∈ Σ. δ(q, ν) ⊆ QD and |δ(q, ν)| = 1
2. ∀F ∈ α. F ⊆ QD × Σ×QD
A run r = t1t2... ⊆ Tω is defined as a sequence of transitions in which for all ti =
(s1, ν1, t1), ti+1 = (s2, ν2, t2) it has to hold that t1 = s2.
A run r is called accepting, if, for each F ∈ α, there is at least one transition of F
occurring infinitely often during r.

Under conditions 1 and 2 of Definition 2, a run needs to leave the non-deterministic
component QN after finitely many steps and change to the deterministic component QD
in order to be an accepting run.

The DRA and the GDRA are another option for the translation from LTL to DPA.
This translation is defined in the papers [5], [12] and [16]. The following definitions for
the automata are based on the notation of [8], which is a more detailed version of [5].

Definition 3. A Deterministic Rabin Automaton (DRA) is a tuple B = (Σ, Q, δ, q0, α)
with alphabet Σ, finite set of states Q, transition function δ : Q × Σ → Q, initial state
q0 ∈ Q and accepting condition α = {(F1, I1), ..., (Fn, In)} with Fi, Ii ⊆ T , where the set
of transitions T is defined as for the LDBA.
A run r = t1t2... ⊆ Tω is again defined as a sequence of transitions, where the start and
end point of two consecutive transitions are equal. A run r on a DRA is accepting, if
there is a pair (Fi, Ii) ∈ α s.t. all transitions in Fi are visited finitely often and at least
one transition of Ii is visited infinitely often.

4



2 Preliminaries

A Generalized Deterministic Rabin Automaton (GDRA) is defined as the DRA , but
with a different accepting condition:

α = {(F1, {I11, ..., I1m1}), ..., (Fn, {In1, ..., Inmn})}

with Fi, Iij ⊆ Q× Σ×Q.
A run on a GDRA is called accepting, if there is a pair (Fi, {Ii1, ..., Iimi}) s.t. each
transition of Fi is visited finitely often and for each Iij there is a transition visited
infinitely often.

The most important automaton for this thesis is the DPA. It is later on used to define
a game between the system player and the environment player, so that a strategy for
the system player can be computed, which fulfills the LTL specification.

Definition 4. A Deterministic Parity Automaton (DPA) is a tuple B = (Σ, Q, δ, q0, α)
with alphabet Σ, finite set of states Q, transition function δ : Q × Σ → 2Q and initial
state q0 ∈ Q. The acceptance condition α : T → {1, ..., c} maps a transition to a natural
number called color.

To set inf(r) = {α(t)|t occurs infinitely often in r} contains all colors, which appear
infinitely often in a run r.
In this thesis, a run r is accepting, if the minimum of inf(r) is odd.

Notice, that it is also possible to have different acceptance conditions for a DPA, e.g.
the minimum of inf(r) needs to be even. However, we follow the implementation [14]
of the translation described in [25][6].

2.2 Translations form LTL to DPA
For this thesis, two translations from a LTL formula to a DPA are relevant. The transla-
tion on which we build our results converts the LTL formula into a LDBA [25] and then
transforms the LDBA into a DPA [6]. This translation has the advantage of keeping
information explicitly stored in the monitors of each state.

The second translation was used by Backs in [1] and builds on a DRA as intermediate
step. We only present a short overview of it, in order to briefly compare the results
obtained by the two approaches.

2.2.1 Using LDBAs as intermediate step
This section gives an overview of the main construction used during the thesis. Details
can be found in [25] and [6]. Firstly, step the LTL formula is translated into a LDBA,
utilizing the so called after formula. This formula defines the conditions under which
the remainder of the formula after reading a letter holds true[25]:

5



2 Preliminaries

Definition 5. Let ϕ be a formula and let ν ∈ 2AP . Then the after formula is defined as
follows:

af(true, ν) = true
af(false, ν) = false

af(a, ν) =
{

true if a ∈ ν
false if a /∈ ν

af(¬a, ν) =
{

false if a ∈ ν
true if a /∈ ν

af(ϕ ∧ ψ, ν) = af(ϕ, ν) ∧ af(ψ, ν)
af(ϕ ∨ ψ, ν) = af(ϕ, ν) ∨ af(ψ, ν)
af(Xϕ, ν) = ϕ

af(Fϕ, ν) = af(ϕ, ν) ∨ Fϕ
af(Gϕ, ν) = af(ϕ, ν) ∧Gϕ

af(ϕUψ, ν) = af(ψ, ν) ∨ (af(ϕ, ν) ∧ ϕUψ)

The missing LTL operators W,R,M are not part of paper [25], but can be defined
using LTL equivalences.

The automaton returned by the construction in [25] consists of an initial component
and an accepting component. In the initial component, each state is labeled by a LTL
formula. There is one state for every formula reachable through the after function. The
edges between states follow the after function, as well. Intuitively, the states keep track
of the formula, that needs to be fulfilled by the rest of the words. In the paper [25],
the formula c ∨ XG(a ∨ Fb) is used as an example. We extend this formula and use
ψ = c ∨XG(a ∨ Fb) ∨Gd as our running example in this section. In the new formula,
the part Gd is a safety formula in the monitors, which helps explaining later on in this
section. The initial component for the LDBA for the described formula is shown in figure
2.1. The initial state is state 5. From there, an edge with label c leads to a sink with
label true, which is the after formula of ψ, when c is part of the first letter. The other
two edges of state 5 depend on whether Gd is violated.

The accepting component, on the other hand, consists of several subcomponents. Each
of these represents a subset of G-subformulas of the original formula ϕ. For the running
example ψ = c∨XG(a∨Fb)∨Gd, the set of all G-subformulas is then {G(a∨Fb),Gd}.
This means, there will be a subcomponent for G(a ∨ Fb) and one for Gd. Theoretically,
there is also one component for the entire set of G-subformulas, but it is optimized away
in the implementation, because a word fulfilling both of the formulas is already accepted
by each one of the first two subcomponents. In addition, there is also a subcomponent for
the empty set. However, this can easily be captured by state 6 of the initial component,
so it is optimized away in the implementation, as well.

6



2 Preliminaries

1: Gd ∨ Gϕ 2: Gd ∨ (Fb ∧ Gϕ) 3: Gϕ

4: Fb ∧ Gϕ

5: c ∨ Gd ∨ XGϕstart

6: true

d ∧ (a ∨ b)

d ∧ ¬a ∧ ¬b

¬d ∧ (a ∨ b)

¬d ∧ ¬a ∧ ¬b

¬c ∧ ¬d

c

¬c ∧ d

a ∨ b

¬a ∧ ¬b

true

b

¬b

d ∧ b

d ∧ ¬b

¬d ∧ b

¬d ∧ ¬b

Figure 2.1: This is the initial component of the LDBA for the formula c ∨XG(ϕ) ∨Gd
with ϕ = a ∨ Fb. The initial state is state 5.

7



2 Preliminaries

For each component, the subset of G-subformulas represented by the component are
the assumptions within it. Intuitively, the master formula should to be true if the
assumptions hold and these assumptions are checked separately.
Therefor, each of the subcomponents is a product of different deterministic automata.

The first automaton measures the progress in the master formula and is similar to the
initial component with a slight difference in the labels of the states. For each state label,
all occurrences of G-formulas, which are part of the assumptions, is replaced by true.
All occurences of G-formulas not contained in the assumptions are replaced by false.
This automaton will then check the finite part of the formula.
Additionally, there is one automaton for each G-formula contained in the assumption.

This automaton checks, that the formula indeed holds.

Figure 2.2 shows the accepting components for the formula ψ = c∨XG(a∨Fb)∨Gd
as returned from the implementation. The implementation adds more details to the
states of the accepting component than the theoretical approach does. Here, each state
consists of a safety formula, a current co-safety formula, stored in the field current, a list
of co-safety formulas, which need to hold all the time, and a list of f-co-safety formulas,
which are co-safety formulas that need to hold eventually. Additionally, there is an index
telling the user which co-safety formula is currently checked. The safety formula is a
formula representing the safety properties of the state. If this formula turns out to be
false, the state will turn into a false-sink. In figure 2.2, a safety formula is e.g. Gd.
The co-safety goals can be seen as reachability. The implementation always works on

one co-safety-goal at a time. The goal is indicated by the field index and is stored in
the field current. Whenever it is satisfied, the index is increased and the next co-safety
goal is tested. In order to ensure fulfilling the goals at all times, each step carries out
a conjunction of the original goal and the goal stored in the list next which represents
what needs to be fulfilled at the moment. This can be seen in the edge from state 3
to state 7. Here, the proposition a was not played, so Fb remains to be fulfilled. The
co-safety goal is updated and put into a conjunction with its original form. The same
would happen for each goal in the field next, assuming there would be one. The f-co-
safety goals are not updated, because they only need to hold at one step, so there is no
need to track a remainder. Whenever the list of co-safety goals is fully traversed, the
index turns negative to indicate the focus is now on the f-co-safety formulas and one by
one they are moved to the field current and tested following the same rules as above.

An edge is part of an accepting set, if all the co-safety goals in next and the set of
f-co-safety goals are fulfilled. In this case, the edges from state 7 to state 7, from state
8 to state 7, from state 9 to state 9 and from state 6 of the initial component to state 6
are part of the acceptance condition.

The initial component is connected to the accepting component using ε-jumps. A
jump leads from a node in the initial component with labeling ϕ to a state in each
subcomponent. The state in the subcomponent corresponds to ϕ, such that each of the
G-subformulas is replaced as above and all the automata checking the assumptions are
in their respective initial state. For example, state 1 of figure 2.1 has an ε edge to the

8



2 Preliminaries

7:
Safety: true
Current: a ∨ Fb

8:
Safety: true Cur-
rent: Fb ∧ (a ∨ Fb)

9:
Safety: Gd Current:
true

false¬2

b ¬a ∧ ¬b

a ∨ b d

¬d

Figure 2.2: The accepting component of the LDBA for the formula c ∨ XG(ϕ) ∨ Gd
with ϕ = a ∨ Fb as returned by the implementation. The index is 0 for
all states, because there is only one goal in each accepting component, and
the next list consists of the one formula in current for the same reason. The
Master-formula is true for each state, since the only finite part to be checked
is c, and this would already be part of the initial component. There is no
f-co-safety goal.

states 7 and 9 of figure 2.2.

Finally, a dpa can be defined from this LDBA. The translation is described in [6].
The main idea is to keep track of all the possible runs a word could have on the au-
tomaton. However, there might be infinitely many of them. To cope with this problem,
an ordering of the runs is defined. Whenever two runs join, the run with the lower
rank in the ordering is kept and the other one is discarded. This is seen as a negative
event and an even color corresponding to the position of the run in the ordering is dis-
played. On the other hand, if a run visits an accepting edge, this is a positive event
and an odd color is returned. Again, the priority will correspond to the position of the
run in the ordering. In total, the lowest ranked run which visits an accepting edge or
merges with another run will be responsible for the overall color of the edge for the DPA.

This is implemented in [14] as follows: Each state of the DPA consists of a master-
formula and several monitors. The master formula ϕ is given by the labeling of the state
in the initial component of the LDBA and is basically defined using the after-formula.
The monitors are all the states of the accepting component the run could be in. They
are given in a list m1, ...mn. The edge for the letter ν ∈ 2AP is then given as follows:
The new master formula is defined as af(ϕ, ν). For each of the monitors, we have a look
at the corresponding state in the LDBA. Each monitor is updated using the transition
function δ of the LDBA. So, the new list of monitors is δ(m1, ν), ..., δ(mn, ν). If there are
duplicates m′j ,m′i, j < i in this list, m′i will be removed and an even priority defined as
2Ind(m′i) where Ind(m′i) = i is the position in the list. The same holds, if the monitor
mi turns into a false sink. On the other hand, if a monitor mi succeeds all its subgoals,
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4:Gd ∨ Gϕ 5:Gd ∨ (Fb ∧ Gϕ) 3:Gϕ
M1: cs = ϕ

6:Fb ∧ Gϕ
M1: cs = Fb ∧ ϕ

2:c ∨ XGϕ ∨ Gd

1:true

true, 1

¬c ∧ ¬d

c

¬c ∧ d

¬b ∧ ¬d

b ∧ ¬d

¬b ∧ d, 1

b ∧ d, 1

¬a ∧ ¬b, 2

a ∨ b, 1

¬b, 2

b, 1

¬d ∧ ¬a
∧¬b

¬d ∧ (a ∨ b)

d ∧ ¬a
∧¬b, 1

d ∧ (a ∨ b), 1

Figure 2.3: The DPA constructed from LDBA for the formula c ∨ XG(ϕ) ∨ Gd with
ϕ = a ∨ Fb. The initial state is state 2. The M in the labeling of a state is
a monitor with co-safety goal cs. Only states 3 and 6 contain monitors.

it will output a good priority, namely 2Ind(mi)+1. Every other monitor will not output
any priority. The overall color of the edge will then be the minimal returned priority of
all the monitors.
Additionally, there are some optimizations. Firstly, if an edge leaves a strongly con-

nected component, it does not have a color, because this edge can only appear once and
the color is irrelevant. Secondly, some monitors are optimized away. Figure 2.3 shows
the created DPA for the formula c ∨XG(a ∨Fb) ∨Gd. The monitors corresponding to
Gd are not present. In the strongly connected component checking for this formula, Gd
is the only goal necessary to win the game, so all the monitors can be optimized away.
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2.2.2 LTL to DPA using DRA
The translation using a DRA as intermediate automaton consists of three steps. First,
the LTL formula is translated into a GDRA as originally described in [5] and explained
in more detail in [8]. Then, a DRA is created like in [12]. Lastly, the DRA is translated
into a DPA as described in [16]. This section will only contain the main ideas of the
translations.

The GDRA is a product of automata. There is one automaton generated using the
after formula as described in definition 5. Additionally, there is one monitor automaton
for each G-subformula of the original formula. Each of these automata has a different ac-
ceptance condition, depending on which other G-formulas are true. This is only needed
in case of nested formulas. The details can be found in [5]. The overall acceptance con-
dition checks the conditions of the monitors for each subset of monitors. Additionally
, it verifies, that the monitors in the subset are enough to satisfy the master formula.
This is not stored explicitly in the states as it is the case for the LDBA construction,
but is contained in the acceptance condition. Figure 2.4 shows the DRA for the formula
c ∨ XG(a ∨ Fb) ∨ Gd. There is one monitor for each of the G-subformulas. These
monitors do not contain any information on connections between them, as it is the case
in the LDBA approach. The acceptance condition ensures the fulfillment of the overall
formula and the subformulas, e.g. C1 checks, that the monitor for G(a ∨ Fb) succeeds
and it is enough to satisfy the master formula of the state. C2 checks for the monitor
Gd. The other conditions check combinations of the above.

Afterwards, the GDRA is transformed into a DRA as described in [12]. the goal is to
have a single set of transitions, out of which one transition needs to be visited infinitely
often, instead of a conjunction of such sets. For one of these conjunctions, one can cre-
ate a DRA accepting the same words by adding a new layer for each of the sets, which
should be visited infinitely often. If one transition of the set corresponding to the layer
is visited, one moves on to the next layer. Afterwards, several of these automata need to
be combined, since the acceptance condition is a disjunction of such conjunctions. To do
so, the automata for each acceptance condition are multiplied with each other to receive
a joint state space. The overall automaton is then created by combining all acceptance
conditions in a disjunction.

For the last step, index appearance records are used. The details can be found in
[16]. To do so, a permutation of the indices of the accepting conditions of the DRA are
stored. Whenever a prohibited set is visited along an edge, its index will be moved to the
end in the permutation. If the prohibited set Fi is visited, it will return a bad priority
depending on its position in the permutation, meaning 2Ind(i), where Ind represents
the position in the permutation. If Ii is visited and Fi is not visited, the set will lead
to a good priority, namely 2Ind(i) + 1. At the end, the lowest priority is returned as
before.
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1:Gd ∨ Gϕ
M1: ϕ
M2: d

2:Gd ∨ (Fb ∧ Gϕ)
M1: Fb, ϕ
M2: d

3:Gϕ
M1: ϕ

4:Fb ∧ Gϕ
M1: Fb, ϕ

5:c ∨ Gd ∨ XGϕ

6:true

e11: d ∧ (a ∨ b)

e12: d ∧ ¬a ∧ ¬b

e13: ¬d ∧ (a ∨ b)

e14: ¬d ∧ ¬a ∧ ¬b

e53: ¬c ∧ ¬d

e56: c

e51: ¬c ∧ d

e33: a ∨ b

e34: ¬a ∧ ¬b

e66: true

e43: b

e44: ¬b

e21: d ∧ b

e22: ¬a ∧ d ∧ ¬b
e22’: a ∧ d ∧ ¬b

e23: ¬d ∧ b

e24: ¬d ∧ ¬b

Figure 2.4: The GDRA for the formula c ∨ XG(ϕ) ∨ Gd with ϕ = a ∨ Fb. The
initial state is state 5. The acceptance conditions is {C1, ..., C5} with
C1 = (∅, {{e11, e33, e43, e21}}), C2 = (∅, {{e11, e12, e21, e22, e22′}}),
C3 = (∅, {{e11, e21}, {e11, e12, e21, e22, e22′}}), C4 =
({e22}, {{e22′}, {e11, e12, e21, e22′}}), C5 = (∅, {{e66}})}.
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2.3 Synthesis
The reactive synthesis problem is to find a system that fulfills a given specification while
not depending on the environmental behavior [3]. For LTL synthesis, we receive a LTL
formula as specification and a partitioning of the propositions into the ones controlled
by the environment player and the ones controlled by the system player. We then con-
struct a DPA from the LTL formula the transformations explained above. Afterwards,
the DRA is extended in order to create a graph game out of it. This game is then used
to find a winning strategy for the system player using the system propositions.

A graph game as defined in [13] is a tuple G = ((V,E), v0, P,Win), where (V,E)
is a directed graph, v0 is the starting vertex and a function P : V → {0, 1} mapping
each state to a respective player, who ones the state and picks the transition taken for it.
In this thesis, player 0 is called the environment player and player 1 is the system player.

For the above transformations, these sets are constructed by splitting each state of the
DPA into several states regarding the propositions. For each state of the automaton, we
construct one state for the environment player. Afterwards, new system states are added
in order to store the environment player’s choice. Here, the system player can choose his
actions. Then, the overall set of propositions containing the environment player’s and
the actions chosen by the system player will lead to the environment state corresponding
to the state in the original DPA reached by the played set of propositions.
for example, consider state 4 of figure 2.3 with environment propositions {d} and

system propositions a, b, c. The state 4 would be the environment state. Additionally,
there would be two system states, one for the choice of d and one for ¬d. In this states,
the system player could choose an arbitrary action. Assuming the environment player
played ¬d and the system player a, b, the next state would be state 3.

A game on this graph will start at the initial vertex v0. The player owning this
vertex will then choose an outgoing transition and move to the respective end state
of the transition. Here, the game will proceed similarly to the first step. Again, the
player owning the state will choose a successor state. This will be continued infinitely
often. As described in [13], one can now define a play as an infinite sequence of vertices
ρ = v0v1v2 ∈ V ω, where each two vertices vi, vi+1 need to be connected by an edge.
There are different possibilities to define the winning condition on such a play. We

use a parity condition. This is based on an assignment of a priority in form of a natural
number to each vertex or to each transition. For each play we take into account the
infinitely often occurring priorities. If the minimum of these numbers is odd, the system
player wins the game. In principle, it is also possible to look at the maximum of all
infinitely often occurring priorities or the system player could win if the selected number
is odd. E.g. the implementation with a DRA as intermediate step returns a game where
the minimal priority occurring infinitely often needs to be even for the system player
to win. However, since we work mostly with the construction described in 2.2.1, we
use the winning condition of the implementation of this approach throughout the paper.
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As priorities, the implementation uses the colors assigned to the edges as described in
definition 4.

2.4 Support Vector Machines
A Support Vector Machine (SVM) is a machine learning method for supervised learning,
which can be applied to both, classification and regression [24]. This section focuses on
classification, as this is needed within the thesis. The idea of a SVM is to separate the
data by a hyperplane [26] given by {x|wx + b = 0, x ∈ R} with w ∈ Rn, b ∈ R with
a maximal margin around it. If the margin is strict, the SVM is called a hard margin
SVM. The data to be separated is given by (x1, y1), ...(xm, ym), where xi is the input
vector and yi is the class of the sample, namely yi ∈ {−1, 1}. New points x can then be
classified using the function sign(wx+ b). The problem of computing such a hyperplane
is defined as follows [24]:

minw,b
1
2w

Tw

s.t. yi(wxi + b) ≥ 1,i = 1, ...m
The constraint ensures, that each data point lies on the correct side of the margin.

The size of the margin can be computed by the perpendicular distance of the two closest
points on each side of the hyperplane to the hyperplane [24]: ( w

wTw
(x1 − x2)) = 2

wTw
,

with |(wx1) + b| = 1 and |(wx2) + b| = 1 and y1 = −y2. The objective in the above
optimization problem maximizes this distance.
If the data is not linearly separable, a soft margin SVM can be used. This is a

generalization of the hard margin, where samples are allowed to violate the margin and
the hyperplane. It is achieved by adding slack variables ξi to the optimization problem
(see [24] for more details):

minw,b,ξ
1
2w

Tw + C
m∑
i=1

ξi

s.t. yi((wxi) + b) ≥ 1− ξi,i = 1, ...m
ξi ≥ 0,i = 1, ...m

The slack variables are part of the objective function and are multiplied with penalty
C to ensure, that the data is still separated as clearly as possible.
The confidence of a sample x is then defined as its distance to the hyperplane.

2.5 Underlying work
In this section, we will describe previous work on the topic of the thesis, which we use
as a basis for our approaches.
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2.5.1 Guided Research of Backs
In his guided research [1], Backs used a SVM to predict edges for winning strategies in
LTL syntheis. He implemented a SVM and came up with basic features to use, which
only depend on the master formula of a state. Because of this, they can be applied to
both of the translations explained above. His features consist of:

• The height of the syntax tree of the master formula of a state.

• The trueness of the master formula of a state. The trueness is defined in [13].
It is an approximation of how close a formula is to being satisfied. First, the
LTL formula is transformed to a formula of propositional logic by replacing every
occurrence of a temporal operator on the top level of the formula by a fresh variable.
The trueness value is then the fraction of satisfying assignments divided by the
number of all possible assignments.

• Disjuncts is the number of disjunctions on the top level of the master formula.

• System control states, if a master formula can approximately be controlled by the
system player. It has a value of 1, if this is most likely the case and a value of 0
otherwise. It is computed by traversing the syntax tree recursively. A proposition
can be controlled, if it belongs to the system player, a conjunction if all conjuncts
can be controlled, a disjunction if one of the disjuncts can be controlled and a
temporal operator is assumed to be controllable, if its operand can be controlled.

• Accepting is a feature computed on an edge. Assuming the system player wins for
an odd color, then this feature will be 1 for all edges with odd color and 0 for all
others. It works the same way for an even winning condition.

For the first four features, a difference value is introduced. Assuming an edge e from
state s to state t, the difference of feature f is defined as:

∆f(e) = f(t)− f(s)

Backs then used the so called change features and the values of the above features
applied to the successor of each edge to train a SVM . The SVM tries to learn for an
edge, if it is part of a winning strategy. In order to apply the SVM to predict an edge for
a state, the SVM is asked for the confidence value of each edge of the state. The edge
with the highest confidence value is returned as initial strategy. Afterwards, a strategy
iteration algorithm is executed to find a winning strategy.

2.5.2 Unpublished Work by Backs
Additionally to the guided research in [1], Backs also implemented other ideas in [2].
Since there is no report available for this work, we give a short overview of his ideas.
The main problem in the report [1] is that monitors are not taken into account.

Backs implemented some basic ideas applicable to the LDBA translation to change that.
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Firstly, he added features similar to the master features described in [1] for each part
of the monitor. For example, there are the features safetyTruenessMonitor, current-
TruenessMonitor and nextTruenessMonitor, which compute the Trueness for the safety
formula, the current formula and the average of the trueness for all formulas the field
next, which holds all co-safety formulas, of a single monitor. There are similar features
for all master-features defined in [1]. These features are computed for each monitor
separately. The problem is, that each state can have a different number of monitors
and a SVM can only work with a fixed amount of features. To overcome this, Backs
computed for each feature the average over all monitors in a state. This way, he could
compute the features for the successor of an edge and compare the different values to
make a decision. For example the feature safetyTrueness of an edge e leading from s to
state t with monitors monitors(t) can be computed as follows:

safetyTrueness(e) = avgm∈monitors(t)trueness(safety(m))
where safety(m) is the safety formula of a monitor.
Backs also implemented a way to compute the difference of a monitor feature along an

edge similar to the idea for master features. The difference is defined as the difference
in the average over all the monitors, e.g. for ∆safetyTrueness:

∆safetyTrueness(e) = avgm∈monitors(t)trueness(safety(m))
− avgm∈monitors(s)trueness(safety(m))

We sometimes call this computation the list based approach to the change feature,
because the value for the entire list of monitors is computed for each state separately.
In addition to that, a new feature is introduced: tempOps is the number of temporal

operators in the top level of a formula.

Furthermore, Backs divided the learning data into transient and recurrent states, after
he realized, that the SVM performs differently on these two classes. A recurrent state
is one, that is visited infinitely often during a game, whereas a transient state stops
appearing at some point in time. He trained a SVM only on transient states and one
only on recurrent states. Backs then combined them using the following idea: whenever
the confidence of the SVM for transient states for some edges of a state is above a
certain level, the bes edge is returned. If it is below this level for all edges of a state,
the SVM trained on recurrent states is asked for advice. The results of this idea can
be seen in table 2.5.2. The SVM trained on recurrent states with only the monitor
features performed badly for the safety class. This is not surprising, since both, safety
and co-safety classes, do not have any monitors in the games. The result of the SVM
only depends on the accepting feature in this case. Additionally, it can be seen, that
the combination of SVMs trained on transient and recurrent states is not necessarily
better then using just one of them. E.g. for the ltl2dpa category it is better to just use
the monitors-recurrent SVM . A reason for this is, that the described approach classifies
most states using the SVM for transient states. In this test run, the secondary classifier
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category master-joint master-
transient

monitors-
recurrent

transient, re-
current com-
bined

trueness

large-co-
safety

0.0014 0.0014 0.0044 0.0010 0.0010

small-co-
safety

0.0000 0.0000 0.0000 0.0000 0.0000

small-p-co-
safety

0.0063 0.0142 0.0193 0.0142 0.0255

large-safety-
56

0.0158 0.0160 0.0853 0.0150 0.0158

small-safety 0.0000 0.0000 0.0617 0.0000 0.0000
small-p-
safety

0.0000 0.0000 0.0000 0.0000 0.0467

large 0.0511 0.0539 0.0572 0.0510 0.0778
small 0.0031 0.0031 0.0590 0.0149 0.0625
lilydemo 0.1573 0.1949 0.2006 0.1674 0.2121
ltl2dba 0.1166 0.1166 0.1166 0.1166 0.2753
ltl2dpa 0.1110 0.1110 0.1110 0.1311 0.3383
Average 0.0283 0.0317 0.0505 0.0322 0.0668

Table 2.1: Number of states not mapped to an edge in the winning strategy divided by
number of all states. Master-joint is a SVM trained on all states with features
only on the master formula, master transient uses the same features, but was
trained on transient states only, monitors recurrent uses only the monitor
features and was trained on recurrent states.

was only consulted in approximately 30% of the cases, even though most of the states
in the games are actually recurrent. Overall, the best SVM was the one trained on only
the master features, but all states. Therefor, we compare our results to this SVM, which
we often call the original one.
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This chapter contains a description of the different ideas we implemented in order to
improve the results of the SVM . In section 3.1, we explain different functions that can
be used to combine the monitors of a state and we discuss different ways to compute
the change of feature values along an edge. The next two sections concern the different
features of a state. Section 3.2 contains newly added ones. Since some of the presented
features are unbounded, we also tried to normalize them as described in 3.3. In section
3.4 we then present similar approaches to the one in section 2.5.2, where we divide the
learning data into different classes and train a SVM for each of these classes. The last
section 3.5 contains an additional check before sending a request the SVM in order to
avoid unnecessary queries.

3.1 Working with the Monitors
The first idea in order to improve the results of [1] is to include features computed on the
monitors of a state and not only rely on the master formula. This is especially interesting
for edges alongside which the master formula does not change. As described in section
2.5.2, Backs already suggested to use the average over all values of a feature computed
on each monitor separately. In this section we discuss different approaches to improve
Backs’ idea. The first challenge is to cope with the different number of monitors in each
state and the different number of co-safety goals. Furthermore, we define different ways
to compute the change value of a monitor feature along an edge.

3.1.1 Variable Number of Monitors
The main problem when defining features on the monitors is that each state has a
different number of monitors and a SVM can only work with inputs of fixed size. Backs
tried to overcome this by computing the average over all the values of the monitors
(see section 2.5.2). However, the average does not take the position of a monitor into
account. As described in section 2.2.1, a monitor ranked at a higher position in the list
can lead to better priorities, if it succeeds, and it can also outweigh monitors listed at
a lower position, where lower position means it is located more towards the end of the
list. Using this fact, we follow two main directions. On the one hand, we implement
additional functions similar to the average and on the other hand, we also try to only
work with the “important” monitors. Both approaches are described in the sections
below.
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Different Functions Applicable to the Feature Values of the Monitors for One State

In addition to the average, we suggest three functions, namely weighted average, a
function using minimum and maximum over the values of a monitor as in [13] and a
function returning a list of feature values.
The weighted average follows the idea that a higher ranked monitor is more important

for the progress of the game than a lower ranked one. It is defined as follows:

Definition 6. Let w ∈ R be a weight, m1, ...,mn the monitors of state s and let f : M→
R be a feature from the monitors to the real numbers, e.g. the trueness feature applied
on the safety formula of a monitor.

wavg(s, f, w) = f(mn) + wf(mn−1) + 2wf(mn−2) + ...+ (n− 1)wf(m1)
w(∑n−1

i=1 i) + 1

The next function is based on the idea that the system player wants to succeed one
monitor infinitely often, and was suggested in [13]. We call it progress function or cus-
tomized function, since for every feature we can use maximum and minimum differently,
depending on if a high feature value is actually desired.

Definition 7. Let Mon(s) be the monitors of state s and let f : M → R be a feature
taking a monitor as input. Then progress is defined as follows:

progress(s, f) = maxm∈Mon(s)(f(m))

This definition is based on features like trueness, where the goal is to improve the
feature value. If the value should be reduced, min can be used instead of max.

It is also possible to return a list of values instead of a single one. We exploit this fact
by computing the feature for each monitor up to a certain threshold position t in the
monitor ranking of a state and let the SVM learn for itself how important each monitor
is. In order to do so, a default value d(f) is needed for each feature f . Whenever the list
of monitors of a state is shorter than the threshold, this default value is returned for the
missing positions. We called the function following this idea the monitorList function.

Definition 8. Let MonPos(s, i) be the monitors of state s at position i in the ranking
of s and let f : M→ R be a feature. We define the monitorList function as follows:

monitorList(s, f, t) =


f(MonPos(s, 1))
f(MonPos(s, 2))

...
f(MonPos(s, t))


For simplicity, we did not include the default value in the definition.

All of the above functions can then be applied similarly to the average described in
section 2.5.2.
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Focusing on Monitors at a High Position

Instead of using all monitors of a state in order to compute a feature with the above
functions, one can also try to focus on “important” monitors as suggested in [13]. A
monitor is considered important, if it could lead to a priority as least as good as the one
on the edge for which we want to make a prediction.
For example, assume the edge has color 5. This color is emitted by the success of the

monitor ranked at position 2 in the list. Consequently, the monitors ranked at position 0
and 1 would lead to a color better than the current one, if they would succeed. In total,
we take the monitors 0 to 2 into account for computing the features. Every monitor at
a position larger than 2 cannot overwrite the current color, so they are considered less
important. Notice that this is just a heuristic. In principle, the monitor at position 2
may only succeed once and afterwards the game could be won by letting some monitor
at position 3 succeed. If the color of the current edge is 4, monitor 2 fails and cannot
overwrite its failure. In this case, we would only consider monitors 0 and 1.
This can be applied to the functions defined in the last chapter. One would replace the

function Mon(s) in the definitions by MonColour(s, c), which returns the monitors of
state s leading to a color at least as good as c, if they succeed. Additionally, MonPos(s)
is replaced by MonPosColour(s, t, c) returning all monitors that could lead to a better
color and are ranked at a position before the threshold.

3.1.2 Formulas within a Monitor
Another problem is that each monitor consists of several subformulas, which are de-
scribed in section 2.2.1. In order to apply the functions of section 3.1.1, we need to
produce one value for each monitor. Backs suggested in his unpublished work, which
is described in section 2.5.2, to have one feature for the safety formula, one feature for
the current field of the monitor and one feature for the list of next co-safety goals. The
f-co-safety goals are not taken into account, because they only need to hold at some
point in the future, so they are not affected by actions taken, whenever they are not the
co-safety goal we are currently trying to succeed.
If we follow this suggestion, we only need to focus on the list of next co-safety goals,

since all other fields contain just a single formula. The first approach is to use functions
similar to those in the last section.
We decide against using the weighted average within a monitor, since all subgoals are

equally important, independent of their position. The average function, on the other
hand, is an option and can be used. For the progress function, we decided to follow the
ideas of [13]:

Definition 9. Let m be a monitor and let f : Formula → R be a feature. Then the
progress function on the list of the next co-safety goals of the monitor is defined as:

progressNext(m, f) = mine∈nextCoSafety(m)f(e)

The minimum is chosen, since all formulas within the list need to be fulfilled at some
point in time for the monitor to succeed. If one of the co-safety goals is hard to satisfy,
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the monitor is likely to not progress, independent of the other co-safety goals. In case
a low feature value indicates a positive event, the maximum instead of the minimum of
all values should be considered.

The described approach has the drawback that the safety and co-safety functions of
the monitors are treated separately. This does not reflect the reality of the game, because
an easy co-safety formula like true does not lead to success, if the safety formula of the
monitor fails and vice versa. In order to solve this problem, we suggest new features,
which are described in section 3.2.

3.1.3 Change of Feature Values along an Edge
There are different ways on how to compute the change value of features defined on
monitors along an edge. Backs suggested to compute the values for the starting and
end point of the edge separately and then subtract them from each other. This does
not reflect the change within a single monitor. In principle it is possible that the first
monitor of a state improves along an edge and the second one worsens by the same value.
This does not have any impact on the suggested change value, but could be helpful due
to the different position of the monitors in the list. Because of this, we try to match the
monitors with each other and compute the change for each pair before applying one of
the functions described in section 3.1.1 to the list of change values.
We propose two main ways to find matching monitors. The first one, called LDBA -

successor, computes the successor of a monitor in the underlying LDBA and evaluates the
change based on this. The problem here is that the computation is costly. Furthermore,
if one monitor fails, the monitors behind it in the list will move forward. This change
of the values regarding the position of the monitors is not reflected, when computing
matching monitors based on the successor. If a monitor with a good feature value is now
ranked further to the beginning of the list, it might be helpful in the future, because not
the monitors themselves define the color, but the position of the monitor in the list. In
this case it might be more interesting to know, how the list of monitors changed.
The second approach, called position-based, follows the described idea. Here, we

compute the change value between two monitors ranked at the same position in the
start and end point of the edge.
For both approaches, we need to have a default value, in case one of the monitors has

no matching partner. This default value can again be defined for each feature separately.

3.2 Additional Features
We also add new features for the SVM to learn from. In a first step, we improve the
accepting feature to take into account the value of the color. Additionally, we suggest
features called obligation set and fail set. These aim to measure the control the system
player has on the formula.
All of the previously named features compute values separately for each part of the

monitor. As already pointed out in the previous section, this might not be the best way
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State 1:
Master: GFa ∨GF¬e
Environment choice: a
M1: s= true, cs = F¬e
M2 :s= true, cs = Fa

State 2:
Master: GFa ∨GF¬e
M1: s= true, cs = F¬e
M2 :s= true, cs = Fa

¬e, 1

e, 3

Figure 3.1: A very simple example where the edge priority might influence the choice.
The rounded corners indicate the environment state. The pictures only shows
a part of a game. The letter s indicates the safety formula of a monitor, cs
is the co-safety formula.

for the monitors, as the safety and co-safety formulas depend on each other. Therefore,
we also present features focusing on the monitor as a whole or even on the entire state.
These are described in section 3.2.3 and 3.2.5.

3.2.1 Edge Priority
In the guided research project [1] Backs added a feature called accepting. This tells
the SVM, if the color emitted by an edge is good for the system player, meaning it is
even, if the winning condition is even and vice versa. However, there are some states for
which the actual value of the color matters, like shown in figure 3.1. Here, both edges
are accepting and lead to the same successor state. However, playing ¬e will lead to the
better priority for the system player. This is mostly relevant, when there are monitors
in between or the environment player could make the last monitor fail.
In order to make these information available to the SVM, we add a new feature

representing the edge priority. Winning colors are mapped to values above 0, loosing
ones to values below. Furthermore, the colors are mapped according to their value in
such a way, that the best color gets the highest score. Since zero is also a possible value
for a color, an additional 1 is added to each priority before the mapping. Additionally,
there is a case distinction on the winning condition. In the case of a maximal winning
condition in the game, all values, which do not belong to the system player will be
mapped below zero and the colors of the system player are not changed. For a minimal
winning condition, one needs to map small colors to large values in the feature, since
the SVM uses only linear functions and cannot learn that a small value above zero is
good, but negative values should be as large as possible. To do this, one computes the
maximal color within the game and reverses the ordering of the colors. Afterwards one
can proceed as in the first case.
For example, let G be a game with minimal odd winning condition and maximal

priority of 7. Let e be an edge with priority prio(e) = 3. Firstly, the priorities are
increased by one. Then the scale of priorities needs to be reversed, because the winning
condition is minimal. There are only two smaller priorities than color 3 in the game, so
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it will be mapped to a value of 5, which is the third smallest odd number. Since prio(e)
is odd, it will not be mapped below zero. In total the feature value is 5.

3.2.2 Obligation Set and Fail Set
Obligation Set

This feature is based on an obligation set similar to the one in [19]. The idea is to find
a set of propositions, that would fulfill the formula, if they were played all the time. If
such a set is present and depends only on the system player, he can win the game easily.

Definition 10. Let ϕ be a formula. We define os(ϕ) as follows:

os(true) = {{}}
os(false) = {}
os(a) = {{a}}
os(¬a) = {{¬a}}
os(ϕ ∧ ψ) = {ϕ1 ∪ ψ1|ϕ1 ∈ os(ϕ) ∧ ψ1 ∈ os(ψ)

∧ @i ∈ AP : ((i ∈ ϕ1 ∧ ¬i ∈ ψ1) ∨ (¬i ∈ ϕ1 ∧ i ∈ ψ1))}
os(ϕ ∨ ψ) = os(ϕ) ∪ os(ψ)
os(Xϕ) = os(ϕ)
os(Fϕ) = os(ϕ)
os(Gϕ) = os(ϕ)
os(ϕUψ) = os(ψ)
os(ϕWψ) = os(ϕ ∨ ψ)
os(ϕRψ) = os(ψ)
os(ϕMψ) = os(ϕ ∧ ψ)

For example, let ϕ = (Fa ∧ (bU¬a)) ∨ ((bWc) ∧Ga). Then we have os(Fa) = {a},
but os(bU¬a) = {¬a}. Together, this will result in (Fa ∧ (bU¬a)) = {}, meaning that
there is no single set that can satisfy the formula. On the other side os((bWc) ∧Ga) =
{{b, a}, {c, a}} and together we have os(ϕ) = {{a, c}, {a, b}}, so by playing either {a, c}ω
or {a, b}ω or any superset of the two, the formula will be satisfied.

As one can see, this method does not yield a set for every formula. For example,
the formula (Fa ∧ (bU¬a)) can be easily satisfied by playing {}{a}ω, but there is no
obligation set for it. However, this feature can still be useful to detect formulas which
can be easily fulfilled.

In the next step, the obligation set needs to be turned into a feature for the SVM. It
is defined as the maximal ratio of system player propositions within an obligation set.
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State 1:
Master: ϕ
Environment: ¬a,¬b
M1: s= G(p0 ∨ p1) ∧
G(¬p0 ∨ ¬p1), cs = Fa
M2: s= G(p0 ∨ p1) ∧
G(¬p0 ∨ ¬p1), cs = Fa,
fcs = Fb
M3: s= false
M4: s= false
M5: s= G¬p0 ∧G¬a ∧
G¬b∧G(p0∨p1)∧G(¬p0∨
¬p1), cs = true

State 2:
Master: ϕ
M1, M2, M3, M4, M5

State 3:
Master: ϕ
M1, M2, M5, M3, M4

p0 ∧ ¬p1, 4

¬p0 ∧ p1, 4

Figure 3.2: This is part of a game generated from (G(p0↔ ¬p1)∧((F(G(((Fa)∨(GFb)∨
(FG(a ∨ b)) ∨ (FGb)))) ↔ (GFp0))) with environment propositions {a, b}.
The missing edge leads to a false state. The list of monitors in the environ-
ment states represents the ordering of the successors of the monitors from
state 1. The safety formula of M3 and M4 in state 1 is made false by the
choice of the environment player.

Definition 11. Let ϕ be a formula the obligation set feature is defined as follows:

osf(ϕ) = maxs∈os(ϕ)

1 if s = ∅
|{a|a∈s∧a∈systemPropositions}|

|s| otherwise

If a member of the obligation set is empty, this means that true was part of the
formula and the formula is always true, no matter of the actions.

We can also use the obligation set to find edges, which improve one of the members
of the obligation set. This can be useful, if the master formula does not change along
an edge. Then, the obligation set can give a hint on what will satisfy the monitors.
The consequence of failing a monitor is removing it from the list. If it originates from
a subgoal, which needs to hold eventually, the monitor reappears at the end ot the list.
Such an example can be seen in figure 3.2. The transition to state 2 lets monitor 5 fail.
Consequently,the monitor is removed, but since it needs to hold eventually is shows up
again at the end of the list. Now, the environment player can repeat the same actions as
before to reach state 1 again and the circle can be repeated. Since 4 is a losing color for
the system player, the environment player wins. State 3 on the other hand allows the
system player to progress. This is also reflected by the obligation set for ϕ. It contains
{¬p0, p1,¬a,¬b}, but no set for {p0,¬p1,¬a,¬b}, because this does not lead the system
player to success for the reason explained. Since the environment player played neither
a nor b, the system player can try to play ¬p0 and p1 to make progress. The edge
represented by this choice will have value 1 in the improveObligationSet feature, the
other edges will have value 0.
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Definition 12. Let s be a system state with environment choice env(s) and master
formula ϕ and let e be an edge with propositions prop(e) starting at s. The improveObli-
gationSet feature is defined as follows:

improveObligationSet(e) =
{

1 if ∃o ∈ os(ϕ).o ⊆ prop(e) ∪ env(s)
0 otherwise

It is important to notice that this feature is risky for formulas like (G¬d ∧ F¬b) ∨
XF(d ∧ b) with environment propositions b. If the environment player chooses to play
b, the improveObligationSet feature suggests for the system player to play d. This will
fail (G¬d ∧ F¬b) and the environment player can win. Overall, the feature might lead
to unexpected results, if the master formula changes along an edge. If it stays the same,
it would be possible to switch to a different member of the obligation set later on.

Fail Set

A similar set to the obligation set can be computed to identify failing formulas. We call
this a fail set. Here, the goal is to find a set of propositions, that would make a formula
false in the next step, if they were played. This can be useful to decide, if the environment
player can make a monitor fail in the next step by violating the safety formula. The
environment player would most likely follow through with it, because failing a monitor
leads to a color in favor of the environment player.

Definition 13. Let ϕ be a formula. We define os(ϕ) as follows:

fs(true) = {}
fs(false) = {{}}
fs(a) = {{¬a}}
fs(¬a) = {{a}}
fs(ϕ ∧ ψ) = os(ϕ) ∪ os(ψ)
fs(ϕ ∨ ψ) = {ϕ1 ∪ ψ1|ϕ1 ∈ os(ϕ) ∧ ψ1 ∈ os(ψ)

∧ @i ∈ AP : ((i ∈ ϕ1 ∧ ¬i ∈ ψ1) ∨ (¬i ∈ ϕ1 ∧ i ∈ ψ1))}
fs(Xϕ) = {}
fs(Fϕ) = {}
fs(Gϕ) = fs(ϕ)
fs(ϕUψ) = fs(ϕ ∧ ψ)
fs(ϕWψ) = fs(ϕ ∧ ψ)
fs(ϕRψ) = fs(ψ)
fs(ϕMψ) = fs(ψ)

The fail set feature is computed similar to the obligation set feature described in 11.
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State 1:
Master: ϕ
Environment choice: {q}
M1: s= true, cs = true
M2
M3: s= (G¬acc ∧XXq ∧G(p ∨
XXq) ∧G(¬p ∨XX¬q)), cs =
true

State 2:
Master: ϕ
M1′: s= true, cs = ((p∧XXq)∨
F(p ∧XXq))
M2′

M3

State 3:
Master: ϕ
M1′: s= true, cs = Facc, fcs =
((p ∧XXq) ∨ F(p ∧XXq))
M2′

M3′: s = (G¬acc ∧ Xq ∧ (p ∨
XXq) ∧ (¬p ∨XX¬q) ∧G(p ∨
XXq) ∧G(¬p ∨XX¬q)), cs =
true

acc, 1

¬acc, 1

Figure 3.3: This is part of a game generated from ((G(F ((p) → (X(X(q)))))) →
(G(F (acc)))) with environment propositions {p, q} and system proposition
acc. Monitor M2′ is the updated version of monitor M2 according to the
edge choice and fcs is an open co-safety goal that has to hold at some point.

3.2.3 Progress in a Monitor
For the system player to win, at least one monitor needs to be fulfilled infinitely often.
For this reason, it is important to the system player to make progress in the monitors.
This is not captured when only taking the features of the monitors into account.
For example, in figure 3.3, the first monitor of state 1 is fulfilled by the environment

player and will succeed. The system player has now the chance to play acc or ¬acc. If
he chooses acc, the co-safety formula of the first monitor will be rather complicated, as
one can see in state 2, and the last monitor will fail. State 3, on the other hand, has a
simpler co-safety formula in monitor 1 and keeps the last monitor. Even though state
3 seems to be the way to go when only using the previous features, state 2 is actually
better in regard of a winning strategy, since monitor 1 is progressed. Even though
monitor 3 does fail, it will not output a bad priority, since the higher ranked monitor
1 did succeed. In order to teach the SVM to progress monitors whenever possible, we
add some features, which will be described below. Since these features are computed
on monitors, the functions described in section 3.1.1 can be used again to compute the
feature for a state.

However, all of the described features have a similar meaning, so using them in the
same SVM might lead to unexpected results due to the dependency between the features.
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State 1:
Master: (G¬q ∧ FG¬acc) ∧ ϕ
Environment choice: {p}
M1: s= true, cs = Facc
M2: s= false
M3: s= G¬acc ∧ G¬q, cs =
true

State 2:
Master: ψ
M1′’: s= true, cs = Fq
M2...
M3: s= G¬acc ∧ G¬q, cs =
true

State 3:
Master: ψ
M1: s= true, cs = Facc
M2: s= G¬acc ∧ G¬q, cs =
true,
M3...

acc, 2

¬acc, 2

Figure 3.4: This is part of a game generated from (((G((p) → (F(q)))) ∧ (G((¬(p)) →
(F(¬(q))))))↔ (G(F(acc)))) with environment propositions {p, q} and sys-
tem proposition acc. MonitorM2 in state 1 is made false by the environment
choice. The monitor 2 of state 2 and 3 of state 3 are not important for the
example, so they are abstracted away. States 2 and 3 have the same master
formula. Monitor 1 does not fail along any edge. In state 2 it has progressed
to check the next co-safety formula.

Co Safety success

The first idea for measuring the progress withing a monitor is to use the percentage of
succeeding co-safety formulas along an edge.

Definition 14. Let m be a monitor of state s with co-safety and f-co-safety formulas
cosafety(m) and let e = (s, ν, t) be an edge. The percentage of succeeding co-safety
formulas is then computed as

percentageSuccCoSafety(m, e) = |{c|c ∈ cosafety(m), c succeeds along e}|
|cosafety(s)|

This feature can be implemented using the distance between the two indices of s and
t. In order to find matching monitors, we use a heuristic based on the position in the list
and the safety formula. Starting at the lowest position in both, s and t, one checks if the
safety formula of the current monitor in s matches the formula of the current monitor
in t. If this is not the case, one can assume that the monitor in s failed and go to the
next in the list of s, while not changing in t. This allows to compute matching monitors
fast.

A drawback of the feature percentageSuccCoSafety is that it treats failing monitors
and monitors without any improvement the same way by giving them a value of 0. We
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improved on that by giving failing monitors, found as described above, a value of −1. As
one can see in figure 3.4, there are special cases, where monitors originate in formulas of
the form FGϕ. Failing these monitors has no large impact, since they will reappear in
the next step. For this reason, reappearing monitors can get a different value, e.g. −0.5
or even 0.

Binary Progress Feature and Charging Level

The above approach does not take newly appearing monitors into account. To capture
that, we add a feature to represent the charge value of a monitor. Here, we view each
already fulfilled co-safety goal of a monitor as some load the monitor has. If all of the
features are fulfilled, then the monitor is fully charged and it will succeed and output a
good priority. This removes the entire charge and the monitor starts checking its goals
again.

Definition 15. Let m be a monitor with co-safety and f-co-safety formulas cosafety(m)
and let checked(m) be the already checked co-safety formulas. Then:

chargeLevel(m) = |checked(m)|
|cosafety(m)|

The feature percentageSuccCoSafety can be seen as the change value for the chargeLevel
feature.
Since we do not have information about the progress of each monitor within the

chargeLevel feature, we added a binary feature doesProgress indicating if a monitor
makes any progress along an edge. It checks, whether percentageSuccCoSafety(m, e) >
0 for an edge e and monitor m. As stated, the feature is binary, so it does not distinguish
between failing monitors and monitors without progress.

3.2.4 Number of Monitors
We also define a feature counting the number of monitors for a state. Our assumption is
that a state with many monitors might have a higher chance to fulfill one of them than
a state with a lower number of monitors. This is of course just a heuristic. If a state has
only one monitor which one only depends on the system player, it is more useful than
having many monitors depending on the environment player. However, a large change
in this feature along an edge might still be an indicator for a major change in the master
formula.

3.2.5 Combination of the Parts of a Monitor
The co-safety and safety formulas of a monitor are not independent of each other, since
an easy co-safety formula does not help the system player, if the environment player can
violate the safety formula.
For example, let e be an environment proposition and s be a system proposition.

The monitor with safety-formula Ge and co-safety formula GFs is not reliable for the
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system player, since the environment player can fail it. However, the co-safety formula
only depends on the system player and might lead the SVM to take actions towards
satisfying it at the expense of failing another monitor.
To solve this problem, we implement a basic version of a feature combining safety and

co-safety formulas:

Definition 16. Let f : Formula → R be a feature taking a LTL formula as input and
let w ∈ R be a weight. We define the combined monitor feature comb : M→ R as follows:

• If the safety formula of the monitor is false, a default value indicating the failing
of the monitor is returned, e.g. 0.

• Otherwise, let v = minc∈cosafety(m)f(c) be the minimum of the feature on all co-
safety formulas of the monitor.
– If the safety formula can be turned false by the environment player in the next

step, we return v
– Otherwise, return wv

The function cosafety(m) returns the co-safety and f-co-safety formulas of a monitor
m.

As before, taking the maximum value of the feature over all monitors is possible for
features, for which a low value indicates a positive event.
The weight ensures that monitors, which are more likely to succeed get a higher value

for the feature. If the environment player can fail a monitor in the next step, this moni-
tor might not be reliable, so it receives a lower value. Still, the monitor might be useful.
Assume, for example, the monitor m2 originates from FGa and there is a monitor m1
with safety formula true and co-safety formula F¬a. If the environment player decides
to play ¬a, the monitor m1 will succeed and give a good priority, which cannot be over-
written by the failing of monitor m2, since m1 is placed before m2 in the list. In this
case, the environment player might want to choose a and, consequently, the co-safety
formulas of m2 are important for the system player.

The described combination of features can be applied to the successor state of an edge
to decide on the quality of its monitors. As inner features for the co-safety formulas, we
use trueness and the obligation set feature, since they have some semantic meaning. In
principle, it is also possible to use other functions.

3.3 Normalization of Features and Relation between Feature
Values of States

Another idea for the features is the normalization of the unbounded features. Unbounded
features like height need to be mapped to a bounded domain before applying the SVM.
Backs used the function x 7→ arctan(x/10) to do so [1]. This function does not take into
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account that a high value in the height feature of the successor t of an edge might be
caused by a high value in the starting point s. If this is the case, the value height(t)
might have even decreased compared to height(s), but will still be considered high.
A first approach is to divide the value height(t) by height(s). However, this feature
will still be unbounded. Using min-max normalization is a different approach to that
problem.

Definition 17. Let x ∈ [xmin, xmax] ⊂ R. The min-max normalization is then defined
as:

x′ = x− xmin
xmax − xmin

For unbounded features, this definition cannot be applied directly, since we do not
know the maximum or minimum value and it would be inefficient to compute all feature
values for every state of the game. This would not allow for an on-the-fly approach
later on. Therefore, we consider only the transitions (s, ν, t) starting at a state s. Then
we compute the set of values of the unbounded feature f for all states related to s:
V = {f(t)|∃ν.(s, ν, t) ∈ T} ∪ {f(s)}. This set can than be used to normalize the feature
values within and yields bounded values for the feature.
This approach still allows for a comparison of the feature values for different successors

of a state, since the features relating to them are all normalized using the same xmin
and xmax. Additionally, the SVM will not need to distinguish between a transition
(s, ν, t) with height(s) = 50, height(t) = 49 and a transition (s′, ν, t′) with height(s′) =
10, height(t′) = 9. In both cases, the height decreases by 1, so the normalization will
scale both states to the same values. Notice, that there might be some problems, if
one edge has an outlying value, for example if the state s also has a transition to the
false-sink, which has height(false) = 1. In this case, the normalization does not have
any advantages to using arctan.

3.4 Separating the Learning Data
In the unpublished work [2], Backs suggested to train two different SVMs, one on tran-
sient states and one on recurrent states. The idea is that winning strategies of different
classes of states behave differently. In the thesis, we suggest three more subdivisions of
the learning data. For the first one, we consider the number of monitors in each state
and its successors. The second one improves on that and also considers the change in
the master formula. Our last idea is not related to the previous ones, but is based on
safety and co-safety formulas. These two classes of formulas do not have monitors in the
games created from them and we train SVMs for them separately.

3.4.1 Different Classes for Transient and Recurrent States
In the case of transient and recurrent states, it can be assumes that the transient states
focus more on improving the finite part of the formula and recurrent states focus on the
infinite part. Thus, the SVM for transient states is trained with the features defined on
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State 1:
Master: Ga ∨ (F¬a ∧ Fd) ∨
F(Ga ∧ ((¬c ∧ ¬f) ∨G¬d))
Environment choice: {a}
M1: s= G¬d, cs = (F¬a∧Fd)∨
F((c ∨ f) ∧ F¬a ∧ Fd))
M2: s= Ga, cs = true

State 2:
Master: F¬a ∨Ga ∨F((c ∨ f) ∧
F¬a∧Fd)∨F(Ga∧ ((¬c∧¬f)∨
G¬d))
M1: s= G¬d, cs = (F¬a∧Fd)∨
F((c ∨ f) ∧ F¬a ∧ Fd))
M2: s= Ga, cs = true

State 3:
Master: Ga ∨ (Ga ∧ G¬d) ∨
(F¬a ∧ Fd) ∨ F(Ga ∧ ((¬c ∧
¬f) ∨G¬d))
M1: s= Ga, cs = true

¬d

d, 0

Figure 3.5: This is part of a game generated from X¬G(F¬a ⊕ ((c ∨ f) ∧ Fd)) with
environment propositions {a, c} and system propositions {d, f}.

the master formula and the SVM for recurrent states is trained on the features for the
monitors.
The problem with this approach is that deciding if a state is transient or recurrent is

hard, if we do not have a winning strategy and, since we want to compute a winning
strategy for a game using the SVMs, we do not have it to decide, which SVM to use.
Therefore, we define a a transient state to be a state in a game, that cannot reach itself
using all edges of the game. Such a state focuses most likely on the finite part of the
formula. However, this still does not allow for an on-the-fly approach later on, since we
would need to compute the entire game first.

3.4.2 Dividing Based on The Number of Monitors
Following the idea that some states focus on the master formula, whereas other states
depend on the monitors, we map each state to one of the following three classes:

Class 1: This class contains states which do not have monitors and states for which no
successor has a monitor.

Class 2: States with monitors belong to this class, if some of the successors of the state
also contain monitors and some do not.

Class 3: In this class are only states with monitors, where all successor states have
monitors, too.

For states in the first class, one can focus on the master formula. For the second class,
the monitors need to be taken into account, as well. However, using only the monitors
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is not enough, because some of the successors depend on the master formula. For the
last class, we assume that the monitors are more important.
During our experiments, we found some states of the second and third class, for which

our assumptions are too restrictive. In class 2, there are states, like state 1 in figure 3.2,
which have an edge to the false-sink. For all the other successors, the master formula
does not change and the choice of the edge only depends on the monitors. Before sending
a request to the SVM , the edge to the false-state is removed, because it is trivial not
to take it. For such a state, the underlying assumptions are not met and the monitors
are more important than the master formula of the successors.
For class 3, there are some states, as shown in figure 3.5, for which the master formula

changes, in contrast to the assumptions for this class. It might be useful to additionally
consider the master formula for those states.

3.4.3 Dividing based on Change in the Master Formula
To solve the above problems, we divide states based on the change in the master formula,
with exception of class 1. This class has only small errors in the experiments, so we keep
it as it is. Instead of class 2 and class 3 we defined classes 4 and 5. Both contain states
with at least one monitor and at least one successor which has again at least one monitor.
Additionally, the following conditions hold:

Class 4: States contained in this class have at least one successor with a different master
formula.

Class 5: For states in class 5, the master formula stays the same along all transitions
starting at the state.

To avoid problems with the false-sink, we remove edges to it before classifying a state.

3.4.4 Training Different Support Vector Machines for Safety and Co-Safety
formulas

A co-safety formula defines a property, that wants to reach a certain state, safety formulas
want to avoid an unpleasant event. The monitors of games derived from co-safety and
safety formulas are optimized away, because the above properties can be checked without
the help of an additional monitor only by the master formula. Since they have a different
structure than the other games and both aim for different goals, we suggest to train one
SVM for co-safety formulas and one for safety formulas in addition to the previously
described cases.

3.5 Additional Obligation Set Check
The idea of this section is to use the obligation set to detect states, which can be easily
won by the system player. If there is a set of system propositions, that would satisfy
a formula, if it would be played all the time, the system player has a winning strategy
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State 1:
Master: dWa ∨ ϕ
Environment choice: {¬a, c,¬b}
M1

State 2:
Master: dWa

State 3:
Master: ϕ′

M1, M2, M3, M4

d

¬d, 0

Figure 3.6: This is part of a game generated from b↔ (XXcU(d∧Fc)))UX(dWa) with
environment propositions {a, b, c} and system propositions {d}. State 1 has
one monitor, state 3 has four monitors. The formula ϕ turns to dWa, if d is
played and ϕ′ otherwise. The missing color of the above edge is optimized
away by the implementation.

and we do not need to ask an SVM for advice. Backs already implemented a similar
check for what he called trivial states [1]. These are states that either have an edge to
a true-sink or have only one edge which does not lead to a false-sink. We improved on
that by adding a check for an obligation set before sending a query to the SVM .

This idea can be particularly helpful for situations like the one shown in figure 3.6.
State 2 has no monitor, but a rather simple master-formula. The system player can win
by always playing d. However, the SVM often aims for state 3 and tries to work with the
monitors, since it assumes that all monitors failed in state 2. In this case, the obligation
set test improves the result.

We implement the check by first asking for an obligation set controlled by the system
player for the master formula of the starting state. If there is one, we play the actions of
this set. This is necessary, because of master formulas like FGa with system proposition
a. Both successor states of the edges with letter {a}, {¬a} will have an obligation set
of the form {a}, so only checking for the obligation sets of successors is not enough. If
the state we currently try to solve does not have such an obligation set, we check for its
successors and only ask the SVM for advise, if none of them has such a set.

This approach cannot detect cases where two obligation sets contradict each other.
For example a master formula F1 = Ga ∨ (d ∧ F¬a) with system proposition d and
environment proposition a forces the environment player to fulfill one of the disjuncts,
assuming the system player plays d now. The obligation set for such a formula contains
the sets {a}, {¬a, d}. Nevertheless, we cannot compare them directly, since the formula
F2 = Ga ∨G(¬a ∧ d) has the same obligation set as F1, but is not satisfied by playing
a at the beginning and ¬a later. In other words, the environment player can fail the
formula, even though the obligation set is the same as the obligation set of F1.
To overcome this, we keep track of a type for each obligation set. The first type is

Globally, meaning the set needs to be played all the time. Finally is used for a set which
satisfies the formula, if it is played at an arbitrary time and Now fulfills the formula, if
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it is played now.

Definition 18. An extended obligation set is of the form {(os1, type1), ..., (osn, typen)}
with typei ∈ {Finally,Globally,Now} = Types and osi ∈ 2AP . Let ϕ be a formula. We
define eos(ϕ) as follows:

eos(true) = {({}, G)}
eos(false) = {}
eos(a) = {({a}, Now)}
eos(¬a) = {({¬a}, Now)}
eos(ϕ ∧ ψ) = {ϕ1 t ψ1|ϕ1 ∈ eos(ϕ) ∧ ψ1 ∈ eos(ψ)

∧ @i ∈ AP : ((i ∈ ϕ1 ∧ ¬i ∈ ψ1) ∨ (¬i ∈ ϕ1 ∧ i ∈ ψ1))}
eos(ϕ ∨ ψ) = eos(ϕ) ∪ eos(ψ)
eos(Xϕ) = {(ψ,Globally)|(ψ, t) ∈ eos(ϕ)}
eos(Fϕ) = {(ψ, F (t))|(ψ, t) ∈ eos(ϕ)}
eos(Gϕ) = {(ψ,Globally)|(ψ, t) ∈ eos(ϕ)}
eos(ϕUψ) = eos(ψ)
eos(ϕWψ) = eos(Gϕ) ∪ eos(ψ)
eos(ϕRψ) = eos(Gψ) ∪ eos(ϕ ∧ ψ)
eos(ϕMψ) = eos(ϕ ∧ ψ)

Where F : Types→ Types means that the set has to hold finally and is defined as:

F (Finally) = Finally

F (Globally) = Globally

F (Now) = Now

The operator t defines the union of two members of the extended obligation set as:

(ϕ1, Now) t (ϕ2, Now) = (ϕ1 ∪ ϕ2, Now)
(ϕ1, Now) t (ϕ2, Globally) = (ϕ1 ∪ ϕ2, Globally)
(ϕ1, Now) t (ϕ2, F inally) = (ϕ1 ∪ ϕ2, Now)
(ϕ1, F inally) t (ϕ2, Now) = (ϕ1 ∪ ϕ2, Now)
(ϕ1, F inally) t (ϕ2, Globally) = (ϕ1 ∪ ϕ2, Globally)
(ϕ1, F inally) t (ϕ2, F inally) = (ϕ1 ∪ ϕ2, F inally)
(ϕ1, Globally) t (ϕ2, Now) = (ϕ1 ∪ ϕ2, Globally)
(ϕ1, Globally) t (ϕ2, Now) = (ϕ1 ∪ ϕ2, Globally)
(ϕ1, Globally) t (ϕ2, Now) = (ϕ1 ∪ ϕ2, Globally)
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We can then check for contradictions between Finally sets and every other set and
Now sets with other Now sets. Globally sets cannot be compared with each other,
because an environment player with action a could easily win the formula Ga∨G¬a or
the formula a ∨G¬a.
The check for contradictions works as follows: We take all Finally sets and all Now

sets of eos(ϕ) and add them to a list L. We then check for contradictions recursively.
If there is only one environment variable v left, we set it to true and remove v from all
sets, that contain it. We remove all sets containing ¬v from L. Then we check, if the
remainder of L does contains a set only depending on the system player. If so, we do
the same thing for the assumption v is false. If both paths have a possible set, we return
true, otherwise false, because a set in both cases means that the system player can fulfill
one of the obligation sets, no matter what the environment player does.
For example, assume L = [({a, b}, t1), ({a}, t2)] with environment proposition a. We

set a to true and what remains is L′ = [({b}, t), ({}, t2)]. Both members can be easily
fulfilled by the system player, the first by playing b, and the second does not have any
restrictions. We now check for setting a to false. Then L′ = [], which means, there is no
set, that could be satisfied. Consequently, we return false.
If there is more than one variable, we call the function recursively. We first set the

value of the environment proposition v we want to check to true and construct L′ as
above. Then we call the function again on L′ with the next environment variable as
parameter. If it returns true, we set v to false, update L′ and check the result. If both
paths return true, we return true, else false.

After we went through the list of Finally and Now sets, we call the same formula on
the list of Finally sets combined with one Globally set at a time. This will check that
either the environment player plays always the Globally set or one of the finally set will
eventually be true.
Adding more than one Globally set at the same time is not possible, since the formula

Ga ∨G¬a will lead to the extended obligation set {({a}, Globally), ({¬a}, Globally)}.
Comparing these two sets would suggest that the system player always has an option to
play. However, the word ({a}{})ω will not satisfy the formula.

This method will not detect all contradictions. For example, the formulas (Fa∧G¬b)∨
(G(a↔ b)) and GFa ∨GF¬a only contain Globally sets in the extended obligation set
and these will not be compared with each other. Furthermore, every part of a formula
containing X will be a Globally set. This is necessary due to formulas of the form
Xa∧XXb. Here, the two parts refer to different time steps, so they cannot be compared.
In order to solve this, one could try to add more types of sets.
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This section describes the experimental results. Firstly, we give an overview of the test
data, define the metric we use to evaluate the different SVMs and give details about
the training process. Afterwards, we follow the same structure as chapter 3. We start
by discussion the different functions for monitors and methods for change values, then
continue with the evaluation of additional features and the normalization of features,
and finish with tests on the separation of the learning data. After the discussion of
improvements on the SVMs, we present the results of applying the additional obligation
set check.

4.1 General Information on the Experiments
4.1.1 Test Data
The test and training date used in this section are based on the automata stored in [2].
This way, the results are as recomputable and as comparable as possible. There are
still slight differences in each test run, because the strategy iteration algorithm, which
computes the training data and a winning strategy from the suggestion of the SVM,
depends on the ordering of the edges for a state. This ordering is not deterministic in
Java, because it is implemented using a set.
The data was already used in [1] to evaluate the results. It consists of the classes large-

co-safety, small-co-safety, small-p-co-safety, large-safety, small-safety, small-p-safety,
large, small, lilydemo, ltl2dba, ltl2dpa. The first eight classes of formulas were generated
randomly and each consist of 100 formulas. The first 75 are used for the training of the
SVMs, the last 25 for the tests in this chapter. The classes with safety and co-safety in
the name contain safety and co-safety formulas, respectively. The letter p in the name
states, that the class is nearly safety or co-safety.
The last three classes are taken from the SYNTCOPMP dataset. The classes lilydemo

and ltl2dpa consist of 22 formulas, ltl2dba contains only 19 formulas. Here, the first half
of the data is used for training the SVMs and the second half for testing.
It is interesting to know that in the games generated from formulas from the class

ltl2dba every state contains at least one monitor. States in games from the safety and
co-safety class do not contain any monitor.

4.1.2 Metric
For the evaluation of different SVMs, we consider only states which have a winning
strategy. For each game, we count the number of these states which the SVM maps
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to an edge not in the winning strategy and divide it be the number of all states with
a winning strategy. We call this the error for winning states of one game. In order to
minimize this value, we compute the winning strategy by applying a strategy iteration
algorithm to the strategy returned by the SVM.
To get the error for winning states for an entire class of games, we build the average

over the error of all games within it.

As a side node on the strategy iteration algorithm, we want to mention, that there
are two ways to compute the winning strategy using the implemented algorithm. The
strategy iteration algorithm can either only return the best possible edge or all edges
which can be added to the initial strategy. In figure 3.1 for example, the best edge is
the edge with priority 1, even though the other edge is also acceptable in this simple
example. Therefore, using only the best edge results in higher value for the error for
winning states than necessary. If the strategy iteration algorithm returns all possible
edges for the winning strategy, both edges of figure 3.1 are included. Consequently, we
use the second option for the evaluation.

4.1.3 Training and Evaluation of the SVMs
In this section, we discuss decisions regarding the training and evaluation of the SVMs.
For the training of the SVM, we exclude trivial states from the training data. As state

is trivial, if it has an edge to a true-sink or only one edge not leading to a false-sink.
The reason is that the SVM is never asked for advice for such states, because they are
solved directly.
Additionally, we remove two optimizations suggested in the implementation [14] of the

translations from LTL to DPA for training and evaluating the SVMs. The first heuristic
tries to produce games as small as possible. If the complement of a formula produces a
smaller game, this game is returned and the roles of the system and environment player
in this game are reversed. As a consequence, the system player then has to fail the
formula in the label of a state. Since the SVM is not aware of that fact and treats all
games the same way, the learning is affected, so we remove the optimization.
The second optimization compresses the colors of edges. Consider the state in figure

3.1. There is no color of value 2 possible, because the second monitor cannot fail, since
the safety formula is true. The color compression would then map color 3 to color 1 and
combine both edges. In general, the optimization creates a list of all colors occurring in
a strongly connected component. Afterwards, gaps between them are removed. E.g. for
the occurring colors 2, 6, 7, color 2 would be mapped to 0 and color 6 to 2, because it is
the first free even color. Color 7 would be mapped to 3. If there is no odd color between
two even colors afterwards or no even color between two odd colors, the two colors are
combined and the remaining colors are again shifted forward. For the above example,
the optimization would return 0, 1 as possible colors.
This optimization is problematic when computing important monitors based on the

color of the edge as described in section 3.1.1. If the optimization is applied in the above
example to an edge originally of color 7 the new color of the edge is 1. According to
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the definition of important monitors, we would only consider the monitor at position 0,
but actually the first four monitors should be taken into account. For that reason, we
remove the color compression.

4.2 Evaluation of the Different Functions for Monitors
In this section we compare the different functions described in section 3.1.1 and the
influence of using all monitors or only the important once as described in section 3.1.1.
All SVMs are trained on all states and contain the features trueness, height, tempOps,
disjuncts, systemControl applied to the master formula, together with the respective
change value of the feature along the edge, as in [1]. We also include the features for
the monitors as presented in section 2.5.2, meaning each of the master features trueness,
height, tempOps, disjuncts, systemControl is applied separately to the fields current,
next, safety of a monitor. Afterwards, we use the functions to construct one value for
each state. For the functions waverage and monitorList, we used the average on the
next co-safety goals of a monitor to get a single value for it. The change features for the
monitors are generated by first computing the value of each state and then subtracting
the value of the successor of the edge from the value of the starting point, as suggested
by Backs [2].
We include the SVM trained using only the master features for comparison. As stated

in section 2.5.2, this SVM is named original.
The tables 4.1, 4.2 and 4.3 show the error for the winning states for each SVMs using

the different functions with important monitors and with all monitors. The values of
these tables are all generated during the same test run.
As one can see, for the function average the SVM using only the important monitors

performs slightly better. This matches the assumption, that monitors ranked at a higher
position than the color of the edge are not as important for the result. For the function
progress, the results are more diverse. This is due to the fact, that goal of the function
is to find the most promising monitor, and this monitor can in general be ranked at a
higher position in the list. However, non of the functions could outperform the use of
only the master features. We assume, this is due to poor generalization of the SVM .
The results of the training accuracy can be seen in figure 4.4. It did increase for all
suggested functions. As already discussed in section 3, the features used here, do not
entirely match the meaning of the monitor formulas, since e.g. the position is important
and the different formulas of a monitor depend on each other.

In table 4.2 one can see the results for weighted average, when using different weights.
We run tests with weights 1, 2, 0.5, because all of the bounded features have a maximal
value of 1, so we use values close to that. The weights 0.5 and 2 performed similarly. Fur-
ther analysis shows, that the weight 0.5 performs slightly better on states with changes
in the master formula and the weight of 2 has a very slight advantage on states which
depend more on the monitors. This makes sense, because the weight 2 gives more prior-
ity to monitors ranked in the front of the list. Additionally, one can see, that using only
the important monitors is of advantage here, as well.
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category original average-color average progress-
color

progress

large-co-
safety

0.01 0.01 0.01 0.01 0.00

small-co-
safety

0.00 0.00 0.00 0.00 0.00

small-p-co-
safety

0.04 0.06 0.07 0.04 0.01

large-safety 0.06 0.06 0.06 0.06 0.01
small-safety 0.00 0.00 0.00 0.00 0.00
small-p-
safety

0.01 0.05 0.05 0.01 0.00

large 0.05 0.10 0.10 0.10 0.06
small 0.03 0.05 0.13 0.07 0.07
lilydemo 0.20 0.11 0.12 0.19 0.25
ltl2dba 0.14 0.18 0.21 0.09 0.09
ltl2dpa 0.13 0.17 0.14 0.14 0.19
Average 0.04 0.06 0.07 0.05 0.05

Table 4.1: Error for winning states for the strategies suggested by the SVMs. The word
color in the name of an SVM means that only the important monitors where
used.

The results for the monitorList function can be seen in table 4.3. We use the thresh-
olds of 3 and 5, because 3 is approximately the average number of monitors in the test
data for states, which have monitors, and 5 is a slightly higher value to see, if including
more monitors than the average turns out to be useful. We can not increase the number
further due to computational limits. In this case, using only the important monitors,
does not improve the results. We assume, that this is due to the fact that the way we
detect this monitors is only a heuristic and the SVM can learn a more detailed use of the
monitors, if it is given as a list. Furthermore, there is no large difference between using
5 or 3 monitors, except, if one decides not to cut according to the edge color. Again,
the function performs not as good as using only the master features. Nevertheless, the
monitorList function has the highest training accuracy, as shown in figure 4.4.

For the future experiments, we proceed with weighted average with weight 2, since it
did perform best, and monitorList with length 5 due to the high training accuracy.
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category original waverage-
w1-color

waverage-
w1

waverage-
w0.5-
color

waverage-
w0.5

waverage-
w2-color

waverage-
w2

large-co-
safety

0.01 0.01 0.01 0.00 0.00 0.00 0.00

small-co-
safety

0.00 0.00 0.00 0.00 0.00 0.00 0.00

small-p-
co-safety

0.04 0.10 0.11 0.01 0.01 0.01 0.00

large-
safety

0.06 0.06 0.08 0.01 0.02 0.01 0.02

small-
safety

0.00 0.00 0.01 0.00 0.00 0.00 0.00

small-p-
safety

0.01 0.05 0.14 0.03 0.03 0.03 0.03

large 0.05 0.09 0.12 0.04 0.05 0.04 0.04
small 0.03 0.12 0.18 0.01 0.01 0.01 0.01
lilydemo 0.20 0.26 0.22 0.13 0.16 0.14 0.16
ltl2dba 0.14 0.14 0.15 0.09 0.11 0.08 0.18
ltl2dpa 0.13 0.35 0.21 0.11 0.17 0.10 0.14
Average 0.04 0.09 0.10 0.03 0.03 0.03 0.03

Table 4.2: Error for winning states for the strategies suggested by the SVMs. Again, the
word color in the name of an SVM means that only the important monitors
where used. The w in the name indicates the weight.

name master-
branch

monitorList-
3-color

monitorList-
3

monitorList-
5-color

monitorList-
5

large-co-
safety

0.01 0.01 0.00 0.01 0.00

small-co-
safety

0.00 0.00 0.00 0.00 0.00

small-p-co-
safety

0.04 0.08 0.04 0.10 0.04

large-safety 0.06 0.06 0.11 0.06 0.08
small-safety 0.00 0.00 0.00 0.00 0.00
small-p-
safety

0.01 0.05 0.04 0.14 0.04

large 0.05 0.09 0.08 0.13 0.09
small 0.03 0.03 0.05 0.16 0.04
lilydemo 0.20 0.11 0.14 0.12 0.13
ltl2dba 0.14 0.35 0.34 0.39 0.35
ltl2dpa 0.13 0.19 0.17 0.25 0.21
Average 0.04 0.06 0.06 0.10 0.06

Table 4.3: Error for winning states for the strategies suggested by the SVMs. Again, the
word color in the name of an SVM means that only the important monitors
where used. The number in the name indicates the threshold.
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master progress-
color

progress monitor-
List-3

monitor-
List-3-
color

monitor-
List-5

monitor-
List-5-
color

avg

77.05 82.60 81.22 85.33 85.39 88.68 85.86 84.79
avg-color wavg-1 wavg-1-

color
wavg-2 wavg-2-

color
wavg-0.5 wavg-

0.5-color
83.83 83.58 82.49 83.52 82.57 83.63 82.45

Table 4.4: The training accuracy in percent for the different SVMs. The training accu-
racy is defined as the number of edges of the training data mapped to the
class given to the SVM.

4.3 Change Features
This section contains the results for the different ways to compute the change value of a
feature defined on monitors. For this, we will not use the stored automata, since they do
not contain all information necessary to compute the exact successor of a monitor. The
results can be seen in table 4.5. We only include the categories for which games contain
states with monitors. On average, there is no large difference for the approaches.
For the monitorList function, the change value computed based on the position per-

formed better than the one computed based on the exact successor. We assume, the
reason is that the position based approach focuses, similar to the monitorList function,
on the list instead of single monitors. The computation suggested by Backs preformed
as good as the position based approach. However, since we want the SVM to learn a rule
for states with monitors, when using features computed on the monitors, we continue
with the position based approach, because it performs best on the class ltl2dba, where
each state has at least one monitor.
For the weighted average, the approach suggested by Backs performs good for most

of the classes, except for small. It seems, that the weighted average focuses more on
the value of entire list than on a single monitor, so using a technique to find matching
monitor does not add useful information. Furthermore, the weighted average uses the
color. For the monitors above the color, it is not necessary to know exactly, which
monitor improves, because it is more important to improve one of the monitors and not
worsen the others.
For the following experiments, we use the position based change value for themonitorList

function and the change over the value of the entire state for the weighted average.
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category monitor-
List-5-
ldba

monitor-
List-5-pos

listmons-
5-list

waverage-
w2-list-
color

waverage-
w2-ldba-
color

waverage-
w2-pos-
color

small-p-
co-safety

0.02 0.01 0.02 0.02 0.03 0.03

small-p-
safety

0.00 0.00 0.00 0.00 0.00 0.00

large 0.04 0.05 0.03 0.02 0.02 0.03
small 0.03 0.03 0.03 0.05 0.04 0.03
lilydemo 0.23 0.22 0.19 0.14 0.18 0.24
ltl2dba 0.11 0.10 0.15 0.17 0.18 0.17
ltl2dpa 0.12 0.09 0.08 0.12 0.09 0.11
Average 0.08 0.07 0.07 0.07 0.07 0.08

Table 4.5: Error for winning states for the different ways to compute the change features.
The SVMs are the ones performing best in the last section. The pos in the
name means that the change feature was computed based on the position in
the list, list means that the feature was computed as suggested in section 2.5.2
and ldba is the computation based on the exact successor.

4.4 Additional Features
In this section, we analyze the different additional features described in section 3.2. We
start by applying the features only to the master formula. The original SVM in [1]
used height, trueness, disjuncts, system control and the accepting feature. We define the
set of new features as height, trueness, disjuncts, the feature defined on the obligation
set, improveObligationSet, the feature defined on the fail set, number of monitors and
the priority feature. We exclude the accepting feature, since the SVM often learns
unexpected weights, e.g. negative weights for either accepting or priority, when they are
used in combination. This is due to the similar meaning of the features. The same holds
for system control and the feature defined on the obligation set.
The results can be seen inf table 4.6. On average, there is no large difference between

the two approaches. However, the SVM trained with the new features performs slightly
better on the categories large-safety, large and ltl2dpa and was only worse for lilydemo
and ltl2dba. The differences here are caused by states for which aiming for a lower pri-
ority of the edge holds no advantage over an edge with higher priority or the two edges
suggested by the SVMs are similar and the strategy iteration algorithm decided on one
of them.

The results for the different features applied to the monitors using the monitorList
function can be found in table 4.7. The naming of the SVMs is as follows:

all The new features are applied to the master formula and each part of the monitors.
Furthermore, both variants to measure the progress of a monitor, meaning the
charge level with the binary progress indicator and the percentage of succeeding
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category master-original master-new-Features
large-co-safety 0.00 0.00
small-co-safety 0.00 0.00
small-p-co-safety 0.01 0.01
large-safety 0.02 0.01
small-safety 0.00 0.00
small-p-safety 0.00 0.00
large 0.06 0.03
small 0.00 0.00
lilydemo 0.14 0.16
ltl2dba 0.12 0.18
ltl2dpa 0.11 0.06
Average 0.03 0.03

Table 4.6: Comparison of the error for winning states of a SVMs trained on the master
formula only using the original or the new features.

co-safety formulas with a recharge value of −0.5, and the number of monitors are
used. We also include the combination monitor features from section 3.2.5.

comb-charge This SVM uses only the combination features from section 3.2.5 and use
the chargeLevel and the binary progress feature to measure the progress of each
monitor. In addition, the new features are applied to the master formula.

comb-co-safety-succ-0 This SVM is similar to the above one, except for the progress
of a monitor. Here, the percentage of successful co-safety formulas is used instead
of chargeLevel in combination the binary feature. Failing monitors get a a value of
−1 for percentageSuccCoSafety and reappearing failing monitors get a value of 0.

comb-co-safety-succ-0.5 Again, this is similar to the SVM directly above it. The dif-
ference is that reappearing failing monitors get a value of −0.5 in percentageSucc-
CoSafety.

newF-charge This applies the new features to the master formula and all parts of the
monitors. Additionally, the charge level and the binary progress feature measure
the progress of each monitor.

newF-co-safety-succ-0 This is similar to newF-charge, but the progress is measured
using percentageSuccCoSafety and the value for reappearing failing monitors is
0.

newF-co-safety-succ-0.5 Here, the value for reappearing failing monitors is −0.5.

newF-comb The SVM applies the new features to the master formula and all parts of
the monitor and also considers the features computed using the combination of
formulas of the monitors.
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newF The new features are applied on the master formula and all parts of the monitors.

original The feature accepting is applied to the edges and the features height, tempOps,
disjuncts, trueness and systemControl are applied to the master formula and all
parts of the monitors.

The last two columns of table 4.7 show the results using the original features and the
new ones on the master-formula and the monitors. As one can see, the results for the new
features outperform the old ones. The reason for the similar average is the number of
games in each category and the rounding of the numbers. The first 8 categories contain
25 games, lilydemo and ltl2dpa only eleven and ltl2dba only nine.

Adding the combination features to the new features does not have any advantage.
The SVM with the combination features has unexpected weights for some of the features,
like the weight for the combination of the fail set with trueness is negative for the monitor
in the second position. On the other hand, the training accuracy for this SVM is 90.05%,
whereas the SVM using only the new features has a training accuracy of 88.79%, so the
bad results might be due to overfitting.
To compare the progress features, we trained two SVMs for each of them, one in

combination with the new feature, and one with the combined features. For both cases,
the percentage of successful co-safety formulas with a value of 0 for failing monitors which
reappear in the next step performed best, but the difference is small. We assume, the
reason is, that the percentageSuccCoSafety contains more information in itself than the
chargeLevel and does not require as much learning from the SVM. Furthermore, failing
a reappearing monitor is not a problem, so giving them a value of 0 seems reasonable.
In total, there is no clear best approach. For large, small, lilydemo and small-p-co-

safety approaches using the combination features and the progress features performed
best. For the classes ltl2dpa one should use the new features in combination with the
progress or on their own. The differences in the ltl2dba category are caused by states,
where keeping the formula of the second monitor does not lead to success. Such a state
can be found in figure4.1. Here, the SVM with the combination features aims for the
simpler second monitor using the edge acc, probably caused by the combination of fail
set and trueness, and the SVM with the new features aims for progressing the safety
formula by playing ¬acc.

The SVMs for the weighted average behave similar to the ones with the monitorList
function. The results can be seen in figure 4.8. The difference is that giving failing
monitors which reappear in the next step a value of −0.5 for the percentage of succeeding
co-safety formulas is of general advantage here. The weighted average focuses more on
the list of monitors as a whole, than on single monitors, and failing a monitor has an
impact on the list, so it should be reflected in the features. However, the difference in
the results for the values 0 and −0.5 is small.
In total, one can see, that the SVMs using the weighted average perform again slightly

better than the ones with the monitorList function.
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cate-
gory

all comb-
charge

comb-
co-
safety-
succ-
0

comb-
co-
safety-
succ-
0.5

newF-
charge

newF-
co-
safety-
succ-
0

newF-
co-
safety-
succ-
0.5

newF-
comb

newF origi-
nal

large-
co-
safety

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

small-
co-
safety

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

small-
p-co-
safety

0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02

large-
safety

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

small-
safety

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

small-
p-
safety

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

large 0.04 0.03 0.02 0.02 0.04 0.04 0.04 0.05 0.04 0.04
small 0.02 0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.01
lily-
demo

0.16 0.11 0.12 0.12 0.15 0.15 0.15 0.18 0.17 0.18

ltl2dba 0.16 0.19 0.18 0.19 0.16 0.16 0.16 0.16 0.16 0.19
ltl2dpa 0.09 0.12 0.12 0.12 0.08 0.07 0.08 0.09 0.07 0.12
Avg 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

Table 4.7: Comparison of the error for winning states for the monitorList function with
threshold 5. The change feature is based on the position.
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cate-
gory

all comb-
charge

comb-
co-
afety-
succ-
0

comb-
co-
safety-
succ-
0.5

newF-
charge

newF-
co-
safety-
succ-
0

newF-
co-
safety-
succ-
0.5

newF-
comb

newF origi-
nal

large-
co-
safety

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

small-
co-
safety

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

small-
p-co-
safety

0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

large-
safety

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

small-
safety

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

small-
p-
safety

0.03 0.00 0.00 0.00 0.03 0.03 0.03 0.03 0.03 0.03

large 0.05 0.02 0.02 0.03 0.02 0.03 0.03 0.03 0.03 0.02
small 0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.01 0.02
lily-
demo

0.15 0.10 0.09 0.09 0.13 0.08 0.08 0.10 0.10 0.13

ltl2dba 0.10 0.18 0.18 0.18 0.14 0.14 0.14 0.14 0.14 0.15
ltl2dpa 0.13 0.09 0.08 0.06 0.07 0.08 0.07 0.08 0.07 0.08
Avg 0.03 0.02 0.02 0.02 0.03 0.02 0.02 0.03 0.03 0.03

Table 4.8: Error for winning states when using the weighted average function with weight
2 and list based change features.
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State 1:
Master: ϕ
Environment choice: {p, q}
M1: s= true, cs = (F¬p∨Xq ∨
XXq ∨XXXq ∨ FXXXq)
M2: s= Gp ∧G¬acc ∧ X¬q ∧
XX¬q ∧XXX¬q ∧GXXX¬q)

State 2:
Master: ϕ
M1
M2: s = (p ∧ ¬q ∧ ¬acc ∧
Gp ∧G¬acc ∧X¬q ∧XX¬q ∧
XXX¬q ∧GXXX¬q)

State 3:
Master: ϕ
M1
M2: s= : (p ∧ ¬acc ∧ Gp ∧
G¬acc ∧XXX¬q ∧GXXX¬q),
cs = true

¬acc, 3, w

acc, 2

Figure 4.1: This is part of a game generated from ((G(F(p → (X(X(Xq)))))) ↔
(G(Facc))) with environment propositions {p, q} and system proposition acc.
The keyword w denotes the winning edge

4.5 Normalizing the Features
This section contains the results for normalizing the unbounded features. They can be
seen on table 4.9. The SVM wavg-2 uses the features of comb-co-safety-succ-0.5, the
SVM monitorList builds on the features of comb-co-safety-succ-0 and master applies
the new features to the master formula.
There is no large difference between the approaches. The overall tendency suggests

not to normalize the features. This is surprising, because the weights for the features
are similar for the SVMs working with normalized features or the original values of the
features. Despite our efforts, we are not able to find a common structure for those states.
We assume, there are a number of factors involved. Some of them might be the number
of monitors and the trueness of the master formula. The normalized SVMs tend to give
those two values a higher weight. Additionally, the number of disjuncts and the height
of the master formula seem to be less important.
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category monitorList
normal-
ized

monitorList wavg-2
normal-
ized

wavg-2 master
normal-
ized

master

large-co-
safety

0.00 0.00 0.00 0.00 0.00 0.00

small-co-
safety

0.00 0.00 0.00 0.00 0.00 0.00

small-p-
co-safety

0.00 0.01 0.00 0.01 0.01 0.01

large-
safety-56

0.01 0.01 0.01 0.01 0.01 0.01

small-
safety

0.00 0.00 0.00 0.00 0.00 0.00

small-p-
safety

0.00 0.00 0.00 0.00 0.00 0.00

large 0.03 0.02 0.03 0.03 0.03 0.03
small 0.00 0.00 0.00 0.00 0.00 0.00
lilydemo 0.12 0.12 0.10 0.09 0.18 0.16
ltl2dba 0.18 0.18 0.18 0.18 0.18 0.18
ltl2dpa 0.13 0.12 0.09 0.06 0.06 0.06
Avg 0.03 0.03 0.02 0.02 0.03 0.03

Table 4.9: Error for winning states of an SVM using normalized features compared to a
SVM with the original features. All SVMs are trained using the new features.
The last two SVMs only use the master formula.
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4.6 Dividing the Learning Data into Different Classes
4.6.1 Transient and Recurrent States
This approach follows the idea of Backs in [2]. We separate the transient form the
recurrent states and train a SVM on each of them. For the transient part, we expect
the master formula to be important, so we train an SVM only using the new features
applied to the master formula. For the recurrent states, we have a look at the results
of the last chapter, which can be seen for only the recurrent states in table 4.10 . The
SVM wavg-comb-co-safety-succ-0.5 performs best on the recurrent states, so we train it
specifically on them.
Table 4.11 shows the results of the test run. The combined SVM follows a different

approach than suggested by Backs [2]: For transient states, we ask the transient SVM
for advice and for recurrent states the SVM trained on recurrent states, instead of only
sending a request to the recurrent SVM, if the results from the SVM for transient states
are not clear enough. Since we cannot compute the transient and recurrent states based
on a strategy, because we do not have one up front, we follow a slightly different notation;
a state in a game is transient if it cannot reach itself. Otherwise it is recurrent. However,
this definition still does not allow for an on-the-fly algorithm.
The table also contains SVMs with the same features as the transient and recurrent

SVMs, but trained on all states.
As expected, the SVMs trained on recurrent states performs slightly better on states

of this class than a similar SVM trained on all states. For transient states, this is not
the case, as can be seen for the large category. Here, the SVM only trained on the
transient states learned a negative value for the edge priority. We assume, this is the
case, because most edges leaving a strongly component are not assigned a priority. Since
transient states cannot reach themselves, most of the edges starting from them have no
priority and, therefore, there are only very view values to learn from. Nevertheless, it
seems to be easy to find edges for transient states, since the errors are low.
The results also show that the combination of the two SVMs leads to better results

than obtained when using each SVM on its own. Especially, the results for the recurrent
states improve. This is often caused by the strategy iteration algorithm. It does not
necessarily include a strategy closest to the initial strategy. For this particular case,
the algorithm sometimes excludes edges to other winning states from the strategy. An
example can be seen in figure 4.2. Please notice that this picture is not based on the
stored automata. As one can see, both, state 2 and state 3, have a winning strategy.
In the third state, playing {f, d} is enough to not let the first monitor fail and succeed
the second one, because the second monitor does not contain co-safety goals. How-
ever, the strategy computed from the recurrent SVM only returns the edge to state 1,
whereas the winning strategy computed from the combination accepts both. Therefore,
an improvement of the metric might help.
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cate-
gory

ml-
comb-
co-
safety-
succ-
0

ml-
newF-
co-
safety-
succ-
0

ml-
newF-
comb

ml-
newF

ml
origi-
nal

wavg-
comb-
co-
safety-
succ-
0.5

wavg-
newF-
co-
safety-
succ-
0.5

wavg-
newF-
comb

wavg-
newF

wavg
origi-
nal

large-
co-
safety

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

small-
co-
safety

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

small-
p-co-
safety

0.01 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01

large-
safety

0.03 0.02 0.02 0.02 0.04 0.03 0.02 0.02 0.02 0.04

small-
safety

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

small-
p-
safety

0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.04 0.04 0.04

large 0.02 0.05 0.05 0.05 0.05 0.04 0.03 0.04 0.04 0.06
small 0.01 0.00 0.00 0.00 0.01 0.00 0.02 0.02 0.01 0.02
lily-
demo

0.14 0.18 0.21 0.19 0.21 0.09 0.07 0.09 0.09 0.16

ltl2dba 0.18 0.16 0.16 0.16 0.20 0.18 0.14 0.14 0.14 0.10
ltl2dpa 0.13 0.08 0.10 0.08 0.14 0.07 0.08 0.08 0.08 0.14
Avg 0.03 0.03 0.03 0.03 0.04 0.02 0.03 0.03 0.03 0.04

Table 4.10: Error of the SVMs from the last chapter on only the recurrent states. The
word ml stands for monitorList.

State 1:
Master: ϕ1
M1, M2

State 2:
Master: bRd

State 3:
Master: ϕ2
M1: s=Gf , cs=ψ
M2: s =Gd, cs=true

¬f ∧ d, w

f ∧ d, 3, s

Figure 4.2: A state of the game for the formula ((XbM(c↔ Xf))↔ (fWfalse))R(bRd)
with environment propositions {c, b} and system propositions {d, f}. The
missing edge leads to a false-sink and the priority for the edge to state 2 was
optimized away. The edge with letter w is part of the winning strategy, s is
returned by the recurrent SVM. For simplicity, we do not show the monitors
of state 1 explicitly; state 2 does not have monitors.
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name combined recurrent recurrent-
joint

transient transient-
joint

large-co-
safety

0.0005 0.0010 0.0010 0.0010 0.0010

t 0.0000 0.0000 0.0000 0.0000 0.0000
r 0.0011 0.0023 0.0023 0.0023 0.0023
small-co-
safety

0.0000 0.0000 0.0000 0.0000 0.0000

t 0.0000 0.0000 0.0000 0.0000 0.0000
r 0.0000 0.0000 0.0000 0.0000 0.0000
small-p-co-
safety

0.0069 0.0044 0.0057 0.0045 0.0062

t 0.0078 0.0000 0.0005 0.0078 0.0000
r 0.0073 0.0073 0.0093 0.0033 0.0103
large-safety 0.0107 0.0148 0.0093 0.0068 0.0116
t 0.0027 0.0000 0.0000 0.0027 0.0037
r 0.0268 0.0410 0.0281 0.0141 0.0275
small-safety 0.0000 0.0000 0.0000 0.0000 0.0000
t 0.0000 0.0000 0.0000 0.0000 0.0000
r 0.0000 0.0000 0.0000 0.0000 0.0000
small-p-
safety

0.0000 0.0000 0.0000 0.0133 0.0000

t 0.0000 0.0000 0.0000 0.0000 0.0000
r 0.0000 0.0000 0.0000 0.0167 0.0000
large 0.0333 0.0262 0.0291 0.0620 0.0316
t 0.0177 0.0044 0.0076 0.0204 0.0060
r 0.0303 0.0276 0.0360 0.0773 0.0344
small 0.0017 0.0032 0.0007 0.0154 0.0009
t 0.0004 0.0031 0.0006 0.0004 0.0004
r 0.0039 0.0044 0.0011 0.0167 0.0022
lilydemo 0.0687 0.0786 0.0794 0.2361 0.1360
t 0.0175 0.0733 0.0294 0.0175 0.0175
r 0.0762 0.0762 0.0883 0.2787 0.1545
ltl2dba 0.0856 0.0856 0.1777 0.1777 0.1777
t 0.0000 0.0000 0.0000 0.0000 0.0000
r 0.0856 0.0856 0.1777 0.1777 0.1777
ltl2dpa 0.0585 0.0691 0.0607 0.1346 0.0559
t 0.0008 0.0323 0.0008 0.0008 0.0008
r 0.0745 0.0745 0.0658 0.1435 0.0621
Average 0.0164 0.0170 0.0202 0.0394 0.0236
t 0.0043 0.0057 0.0025 0.0046 0.0020
r 0.0191 0.0200 0.0239 0.0451 0.0274

Table 4.11: Comparison of the different SVMs on transient (t), recurrent (r) and all
states. The recurrent SVM uses the features of wavg-comb-co-safety-success-
0.5 trained on only recurrent states, the transient applies the new features
to the master formula. The word joint in the name indicates, that the SVM
is trained on all states.

51



4 Experimental Results

4.6.2 Number of Monitors
In the next step, we separate the states by the number of monitors in them and their
successors. We assume that for states with monitors in them and all of their successors
these monitors are more important than the master formula. States with no monitors or
states, where none of the successors has a monitor, should rely on the master formula.
Again, we use the results form section 4.4, which can be seen in table 4.12 for class

2 states and table 4.13 for class 3 states, to detect, which SVMs to use. In both cases,
the SVM wavg-comb-co-safety-succ-0.5 performs best, so we will train one SVM with
these features for each of the classes. The SVM for class 1 only depends on the master
formula and uses the new features. For comparison, we include a SVM with the original
features applied to the master formula and all parts of the monitors. The function used
to compute one value per monitor features is also indicated in the name.
In the test run, we include a combination of the SVMs, which will ask one of the three

SVMs for advice, depending on the type of state. The results can be seen in table 4.14.
The table excludes categories without states of class 2 and 3 and the results for class 1,
because for this class all SVMs lead to similar errors of values below 0.5%.

The combination worked as expected. It mostly keeps the results of the single SVMs
for their respective type of state, meaning the result of e.g. class 2 correspond to the
results of the SVM trained on this class when used on its own. The slight differences
are caused by the ordering in which the edges are given to the SVM and the changes
induced from the strategy iteration algorithm.
However, for class 2, the SVMs of class 1 and class 3 perform better on states of this

class, than the SVM trained specifically for this states. We assume, that this class has
both, states, for which the master formula is crucial, and states, which focus on the
monitors. For example, states with one edge to a false-sink and all other edges to states
with the same master formula belong to this class. In that case, the master formula
should not have impact on the result of the SVM, because the edge to the sink will
be excluded before sending the request to the SVM. Additionally, class 2 also contains
state, where the master formula changes and influences the result, for example when
going from a state with master formula dWa ∨ ϕ to dWa, like it can be seen in figure
3.6. In the state 2 of this example, the monitors are optimized away and the edge to
take should be determined by the master formula. These two special cases make it hard
to learn a general rule for class 2.
For the states of class 3, the SVM trained using features of the master formula in

addition to the features of the monitors leads to better results than the SVM trained
only on features for the monitors. This contradicts our assumption. Furthermore, the
SVM trained for class 1 also leads to good results for states of class 3. Indeed, this class
also contains states with changes in the master formula, so it should be considered when
choosing an edge.
It is interesting to see that for the overall average the SVM leading to the best results

is the SVM trained on states of class 3. This is due to the fact, that we only consider
classes with monitors in the table and class 3 contains both, states focusing on the
monitors and states for which the master formula has an impact.
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cate-
gory

ml-
comb-
co-
safety-
succ-
0

ml-
newF-
co-
safety-
succ-
0

ml-
newF-
comb

ml-
newF

ml-
origi-
nal

wavg-
comb-
co-
safety-
succ-
0.5

wavg-
newF-
co-
safety-
succ-
0.5

wavg-
newF-
comb

wavg-
newF

wavg-
origi-
nal

small-
p-co-
safety

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

small-
p-
safety

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

large 0.05 0.09 0.11 0.09 0.09 0.06 0.07 0.06 0.06 0.10
small 0.05 0.02 0.02 0.02 0.09 0.01 0.06 0.05 0.05 0.08
lily-
demo

0.11 0.26 0.30 0.30 0.31 0.12 0.15 0.19 0.19 0.28

ltl2dpa 0.12 0.07 0.09 0.07 0.12 0.06 0.07 0.08 0.07 0.13
Avg 0.07 0.08 0.10 0.09 0.11 0.05 0.07 0.07 0.07 0.11

Table 4.12: Error for the SVMs from the last chapter on states of class 2. The word ml
stands for monitorList. We exclude categories not containing states of class
2.

cate-
gory

ml-
comb-
co-
safety-
succ-
0

ml-
newF-
co-
safety-
succ-
0

ml-
newF-
comb

ml-
newF

ml-
origi-
nal

wavg-
comb-
co-
safety-
succ-
0.5

wavg-
newF-
co-
safety-
succ-
0.5

wavg-
newF-
comb

wavg-
newF

wavg-
origi-
nal

small-
p-co-
safety

0.03 0.07 0.07 0.07 0.06 0.02 0.03 0.03 0.03 0.03

small-
p-
safety

0.00 0.00 0.00 0.00 0.00 0.00 0.24 0.24 0.24 0.24

large 0.10 0.05 0.05 0.04 0.11 0.01 0.00 0.03 0.04 0.12
small 0.01 0.09 0.09 0.09 0.11 0.00 0.02 0.04 0.02 0.01
lily-
demo

0.18 0.11 0.13 0.10 0.13 0.08 0.04 0.04 0.04 0.05

ltl2dba 0.18 0.16 0.16 0.16 0.19 0.18 0.14 0.14 0.14 0.10
Avg 0.09 0.09 0.09 0.08 0.11 0.05 0.05 0.07 0.06 0.08

Table 4.13: Error for the SVMs from the last chapter on states of class 3. We exclude
categories which do not contain states of class 3.
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cate-
gory

combi-
nation

combi-
nation:
class 3
moni-
tor

class 1 class 1
joint

class 2 class 3 class 2,
3, joint

class 3
moni-
tor

small-
p-co-
safety

0.0039 0.0057 0.0045 0.0062 0.0065 0.0039 0.0057 0.0057

class 2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
class 3 0.0150 0.0220 0.0174 0.0237 0.0249 0.0150 0.0220 0.0220
small-
p-
safety

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

class 2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
class 3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
large 0.0273 0.0302 0.0437 0.0324 0.0432 0.0230 0.0291 0.0292
class 2 0.0798 0.0829 0.0789 0.0680 0.0813 0.0629 0.0636 0.1289
class 3 0.0132 0.0970 0.0390 0.0283 0.0676 0.0132 0.0147 0.0971
small 0.0025 0.0115 0.0009 0.0009 0.0103 0.0002 0.0007 0.0099
class 2 0.0515 0.0515 0.0000 0.0000 0.0515 0.0027 0.0053 0.0050
class 3 0.0011 0.1526 0.0086 0.0086 0.0216 0.0011 0.0043 0.1526
lilydemo 0.1833 0.2407 0.1464 0.1507 0.1716 0.0809 0.0840 0.1460
class 2 0.3435 0.3435 0.2237 0.2362 0.3435 0.1183 0.1183 0.1353
class 3 0.0655 0.2652 0.1035 0.0973 0.0351 0.0655 0.0788 0.2652
ltl2dba 0.1777 0.1777 0.0856 0.1777 0.0856 0.1777 0.1777 0.1777
class 3 0.1777 0.1777 0.0856 0.1777 0.0856 0.1777 0.1777 0.1777
ltl2dpa 0.0985 0.0985 0.0609 0.0614 0.0985 0.0895 0.0607 0.0690
class 2 0.0985 0.0985 0.0609 0.0614 0.0985 0.0895 0.0607 0.0690
Average 0.0466 0.0550 0.0359 0.0410 0.0442 0.0345 0.0336 0.0424
class 2 0.1037 0.1046 0.0686 0.0668 0.1042 0.0589 0.0519 0.0769
class 3 0.0451 0.1302 0.0429 0.0561 0.0455 0.0451 0.0489 0.1302

Table 4.14: Error of the different classes. The class 1 SVM is newF trained on only
the master states, the class 2 and class 3 SVMs are wavg-comb-co-safety-
succ-0.5 and class 3 monitor means, the previously mentioned SVM is only
trained using features on monitors, not on the master formula. The category
ltl2dpa does not contain states of class 3 and ltl2dba does not contain states
of class 2.
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4.6.3 Change in the Master Formula
We again look at the rest run from section 4.4 to detect useful SVMs. Table 4.15
and 4.16 show the results for class 4 and 5, respectively. We train the same SVM as
before, namely wavg-comb-co-safety-succ-0.5. Additionally, we train the SVM ml-newF-
co-safety-success-0 for class 5, where ml is the abbreviation for monitorList. The SVMs
for class 5 do not use features computed on the master formula, since the master formula
does not change for all edges of the state and should not influence the result.
The results of this experiment can be seen in table 4.17. Notice, that these runs

where executed separately form the other tests in this chapter due to an error in the
implementation.
As expected, the SVMs trained on a specific type of states lead overall to better

results on these states than the SVM trained on all states. For states of class 5, both
SVMs trained on this class return worse results than the corresponding SVM trained
on all states for some categories, e.g. small-p-co-safety and large. The differences are
caused by states in which the SVMs for class 5 focus on not failing monitors, while the
SVMs trained on all states try to make progress in one monitor, even on the expense
of failing another one. This is caused by different weights for the features priority and
percentageSuccCoSafety. The first feature is more important than the second one for the
SVMs of class 5 and the ordering is reversed for the SVMs trained of all states.

The SVM wavg-comb-co-safety-succ-0.5 trained on class 5 states performs best out of
all the SVMs in the test run, except for the combined SVMs. This is surprising, since the
SVM uses only the monitor features and the feature edgePriority and improveObSet. For
states without monitors, the SVM can only use the last two features to make decisions,
which means, that these features are of high importance for the game.
The idea to combine the results of each class by using a different SVM depending

on the class of a state improves the results. The SVMs for states of class 1 and 4
behave as expected. However, the results for states of class 5 are are worse by a small
factor compared to the corresponding SVM on its own. This mostly originates from
the category small-p-co-safety and is caused by the strategy iteration algorithm. An
abstract example can be seen in figure 4.3. Here, the ordering of the monitors is not
important, since both monitors have true as a safety formula, which means, they cannot
fail. The winning strategy computed from the combination of SVMs only accepts one
of the edges, even though both edges lead to the same result. This error value for the
combination.
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cate-
gory

ml-
comb-
co-
safety-
succ-
0

ml-
newF-
co-
safety-
succ-
0

ml-
newF-
comb

ml-
newF

ml-
origi-
nal

wavg-
comb-
co-
safety-
succ-
0.5

wavg-
newF-
co-
safety-
succ-
0.5

wavg-
newF-
comb

wavg-
newF

wavg-
origi-
nal

small-
p-co-
safety

0.03 0.07 0.06 0.06 0.08 0.02 0.02 0.01 0.02 0.01

small-
p-
safety

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

large 0.05 0.08 0.08 0.08 0.06 0.06 0.05 0.06 0.06 0.09
small 0.01 0.02 0.02 0.02 0.05 0.00 0.02 0.02 0.01 0.03
lily-
demo

0.17 0.20 0.23 0.21 0.23 0.09 0.07 0.08 0.08 0.14

ltl2-
dba

0.09 0.09 0.09 0.09 0.10 0.09 0.09 0.09 0.09 0.11

ltl2-
dpa

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Avg 0.06 0.08 0.08 0.07 0.08 0.04 0.04 0.04 0.04 0.07

Table 4.15: Error for the SVMs from the last chapter on states of class 4. Again, cate-
gories without states of class 4 are excluded.

State 1:
Master: ϕ

State 2:
Master: ϕ
M1, M2

State 3:
Master: ϕ
M2, M1

wComb, wSingle

wSingle, strategy

Figure 4.3: Abstraction of a problematic state, as e.g. found in the game for the formula
F(Fa ∧ Fd ∧ GX(c ∨ FXe)). The monitors each have a safety formula of
true. The edges part of the winning strategy are indicated by wComb for
the combination and wSingle for the SVM on it own. The edge with keyword
strategy is returned in both initial strategies.
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cate-
gory

ml-
comb-
co-
safety-
succ-
0

ml-
newF-
co-
safety-
succ-
0

ml-
newF-
comb

ml-
newF

ml-
origi-
nal

wavg-
comb-
co-
safety-
succ-
0.5

wavg-
newF-
co-
safety-
succ-
0.5

wavg-
newF-
comb

wavg-
newF

wavg-
origi-
nal

small-
p-co-
safety

0.10 0.09 0.09 0.09 0.07 0.06 0.10 0.10 0.10 0.07

small-
p-
safety

0.00 0.00 0.00 0.00 0.00 0.00 0.28 0.28 0.28 0.28

large 0.00 0.02 0.05 0.03 0.09 0.00 0.00 0.03 0.03 0.03
small 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.20 0.10 0.00
lily-
demo

0.05 0.05 0.08 0.08 0.08 0.06 0.07 0.09 0.09 0.10

ltl2-
dba

0.20 0.18 0.18 0.18 0.23 0.19 0.16 0.16 0.16 0.13

ltl2-
dpa

0.15 0.09 0.12 0.09 0.16 0.07 0.08 0.08 0.08 0.16

Avg 0.09 0.07 0.09 0.08 0.11 0.06 0.10 0.11 0.10 0.11

Table 4.16: Error for the SVMs from the last chapter on states of class 5. Categories
without states of class 5 are not considered.
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category combi-
nation,
class 5:
wavg

combi-
nation,
class 5:
monitor-
List

wavg
class 4

wavg
class 5

wavg
joint

monitor-
List
c5

monitor-
List
joint

small-p-
co-safety

0.0047 0.0044 0.0048 0.0059 0.0057 0.0038 0.0068

class 4 0.0168 0.0168 0.0168 0.0237 0.0244 0.0176 0.0267
class 5 0.0865 0.0673 0.0962 0.0769 0.0577 0.0192 0.0962
small-p-
safety

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

class 4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
class 5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
large 0.0254 0.0254 0.0236 0.0146 0.0291 0.0452 0.0244
class 4 0.0475 0.0475 0.0475 0.0799 0.0580 0.1377 0.0504
class 5 0.0400 0.0400 0.0050 0.0250 0.0000 0.0500 0.0000
small 0.0043 0.0116 0.0043 0.0004 0.0007 0.0558 0.0025
class 4 0.0148 0.0148 0.0148 0.0015 0.0036 0.1357 0.0139
class 5 0.0000 0.1000 0.0000 0.0000 0.0000 0.1000 0.0000
lilydemo 0.0992 0.1073 0.1203 0.1276 0.0983 0.1205 0.1315
class 4 0.1113 0.1113 0.1113 0.1780 0.1119 0.1545 0.1906
class 5 0.0551 0.0699 0.0938 0.0551 0.0551 0.0699 0.0461
ltl2dba 0.0856 0.1170 0.1777 0.0856 0.1777 0.1170 0.1820
class 4 0.0922 0.0922 0.0922 0.0922 0.0922 0.0922 0.0922
class 5 0.1028 0.1342 0.1949 0.1028 0.1949 0.1342 0.1992
ltl2dpa 0.0750 0.0665 0.1025 0.0750 0.0607 0.0665 0.1191
class 4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
class 5 0.0820 0.0858 0.1117 0.0820 0.0662 0.0858 0.1490
Average 0.0298 0.0334 0.0407 0.0299 0.0350 0.0474 0.0439
class 4 0.0451 0.0451 0.0451 0.0623 0.0463 0.1085 0.0586
class 5 0.0605 0.0784 0.0839 0.0569 0.0633 0.0759 0.0865

Table 4.17: Error of the different SVMs. The SVM for class 1 uses the new features
applied to the the master formula, the wavg SVMs are trained on the fea-
tures of wavg-comb-co-safety-succ-0.5, the monitorList SVMs are trained like
monitorList-newF-co-safety-succ-0. The first two SVMs are combinations,
where only the last SVM is changed as stated in the name. The SVMs for
class 5 do not consider the master formula.
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4.6.4 Different Categories of Games
The last separation of the training data concerns the types of games. We train a different
SVM for safety and co-safety formulas. The SVMs apply the new features to the master
formula. Table 4.18 shows the results. The SVM trained on the safety class did not
perform well, not even on its own games. The point of these games is to avoid some bad
event. This can not be captured by the existing features, since the only feature included,
which aims for not failing the master formula, is the fail set. The other features try to
succeed it. The feature based on the fail set has indeed a high influence in the SVM
trained on safety formulas.
On the other hand, the SVM for the co-safety formulas leads to good results. It seems,

that focusing on achieving something good works well for most games. Additionally, most
of the features presented in this thesis and by Backs [1] work in that direction.

name newF co-safety-newF safety-newF
large-co-safety 0.00 0.00 0.00
small-co-safety 0.00 0.00 0.00
small-p-co-safety 0.01 0.00 0.12
large-safety 0.01 0.01 0.02
small-safety 0.00 0.00 0.00
small-p-safety 0.00 0.00 0.13
large 0.03 0.01 0.16
small 0.00 0.01 0.15
lilydemo 0.12 0.11 0.35
ltl2dba 0.18 0.09 0.55
ltl2dpa 0.06 0.06 0.50
Average 0.02 0.02 0.13

Table 4.18: Error of training SVMs based on the type of formula.

4.7 Additional Obligation Set Test
In this section, we present the results obtained when using the additional obligation set
check before sending a request to the SVM. For comparison, we use a SVM trained on the
features presented in [1] for the master formula, called original, one for the new features
on the master formula, called newF, either trained on all formulas or only the co-safety
formulas. In addition, we use wavg-w2-newF-co-safety-succ-0.5, called wavg-newF in
the results of this section, from section 4.4 and wavg-w2-comb-co-safety-succ-0.5, called
wavg-comb, trained on states of class 5 without features on the master formula, because
these are the SVMs leading to the best results in the previous sections.
The results can be seen in table 4.19. The additional obligation set check reduces the

error for all SVMs. One can also see, that the overall best results are achieved when
using the SVMs trained with features for the monitors, especially for the categories large,
small and ltl2dpa. This categories depend on the monitors. However, for the class of
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cate-
gory

origi-
nal

origi-
nal
check

newF newF
check

newF
co-
safety

newF
co-
safety
check

wavg-
newF

wavg-
newF
check

wavg-
comb

wavg-
comb
check

large-
co-
safety

0.0014 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0015 0.0010

small-
co-
safety

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

small-
p-co-
safety

0.0048 0.0110 0.0062 0.0110 0.0045 0.0110 0.0073 0.0110 0.0045 0.0110

large-
safety

0.0158 0.0040 0.0116 0.0040 0.0142 0.0040 0.0079 0.0040 0.0362 0.0040

small-
safety

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0045 0.0000

small-
p-
safety

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0333 0.0000 0.0133 0.0000

large 0.0513 0.0243 0.0287 0.0131 0.0097 0.0111 0.0261 0.0104 0.0171 0.0135
small 0.0031 0.0003 0.0009 0.0003 0.0069 0.0072 0.0119 0.0076 0.0004 0.0003
lily-
demo

0.1565 0.1565 0.1692 0.1631 0.1603 0.1603 0.0906 0.0906 0.1367 0.1327

ltl2dba 0.0782 0.0782 0.1777 0.1777 0.0856 0.0856 0.1423 0.1423 0.0856 0.0856
ltl2dpa 0.1144 0.1144 0.0584 0.0584 0.0605 0.0605 0.0695 0.0695 0.0750 0.0750
Avg 0.0267 0.0231 0.0253 0.0231 0.0197 0.0199 0.0235 0.0188 0.0224 0.0186

Table 4.19: Error for winning states for the SVMs. The check in the name of the SVMs
indicates, that an additional obligation set check was performed.

safety formulas, the SVMs only trained on the master formula achieve the best results.
Table 4.20 shows the run time for each SVM and trueness. The obligation set check

significantly reduces the time. The reason is, that the SVMs are realized as a local server
and the program needs to refer to them for advice. The obligation set check can solve
some of the states, before sending the request. Nevertheless, trueness is still faster by a
factor of 100.
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cate-
gory

origi-
nal

origi-
nal
check

newF newF
check

newF
co-
safety

newF
co-
safety
check

wavg-
newF

wavg-
newF
check

wavg-
comb

wavg-
comb
check

true-
ness

large-
co-
safety

0.14 0.09 0.12 0.08 0.13 0.15 0.12 0.09 0.12 0.51 0.14

small-
co-
safety

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

small-
p-co-
safety

0.03 0.02 0.03 0.0281 0.02 0.02 0.05 0.03 0.03 0.02 0.02

large-
safety

5.38 0.26 5.32 0.24 5.39 0.13 5.83 0.25 5.01 0.17 0.04

small-
safety

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

small-
p-
safety

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

large 13.08 0.11 12.96 0.09 13.25 0.15 13.40 0.06 12.83 0.15 0.07
small 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
lily-
demo

699.52 98.79 712.29 98.68 685.24 101.68 695.64 101.32 692.99 103.91 1.25

ltl2-
dba

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

ltl2-
dpa

71.85 73.33 69.97 72.41 71.85 73.62 72.51 74.93 71.10 71.98 0.10

Avg 55.42 12.89 56.11 12.80 54.46 13.11 55.28 13.19 54.85 13.16 0.12

Table 4.20: Average of the run time in milliseconds. The check in the name of the SVMs
indicates, that an additional obligation set check was performed.
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4.8 Comparison of the LDBA and the DRA Approach
This section compares the results obtained when using the DRA as intermediate automa-
ton and the features suggested in [1] with the results obtained in the last section. The
naming of the SVMs is as before. In addition, there is a SVM master combination. This
is a combination of different SVMs based on classes 1, 4 and 5 as presented in section
4.6.3. The SVMs for class 4 and 5 are trained on using the features wavg-comb-co-safety-
succ-0.5 applied to states of their respective class. The SVM for class 4 in addition uses
the new features applied to the master formula, while the SVM in class 5 only considers
the monitors, the priority of an edge an the improveObligationSet feature. The row with
title trans/rec combination shows the results for the combination of one SVM for tran-
sient and one for recurrent states, as described in section 4.6.1. Additionally, we include
the results for the heuristic Trueness applied to a game resulting from the translation
with an intermediate LDBA. An additional obligation set check is applied for each of
the SVM, except for the rows original, DRA and trueness LDBA.
The number of winning games directly solved by the initial strategy can be found

in table 4.21. As one can see, the DRA approach has an advantage for co-safety and
safety formulas. However, we want to mention that the LDBA approach also solves all
co-safety formulas correctly in some test runs. This depends on the ordering in which
the edges are are processed.
For the categories large and lilydemo, the translation with the intermediate LDBA

leads to better results. This is expected, since both classes contain many states with
monitors. Surprisingly, the translation with an intermediate DRA can solve more games
directly than the presented SVMs.
The errors of the SVMs for the LDBA approach in this category are mostly caused by

one of the following cases: In the first case, the SVM aims for a simpler safety formula,
like it can be seen in 4.4. The safety-formula of monitor 2 is easier in state 2, however,
the winning strategy leads to state 3, because playing acc lets the last monitor fail. The
second case can be seen in figure 4.5. In this case, the SVM keeps the second monitor
from failing, but does not progress the first. Because of the X operator in the safety
goal, the current implementation is not able to recognize this monitor as a reappearing
one. Both of these cases are captured by the color of the edge for the translation with
the intermediate DRA. As a consequence, the SVM for this approach can focus on the
color instead.
In total, the approach presented in this thesis can solve approximately as many games

optimally as the approach suggested in [1]. For the translation using a LDBA as in-
termediate step, the approaches presented in this thesis solve 12 more games optimally
than an SVM using the features of [1] an 25 more games than the heuristic trueness
applied to the obtained DPA when using the construction with an intermediate LDBA.
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category
(num-
ber of
win-
ning
games)

original wavg-
newF

wavg-
comb

newF trans/-
rec
combi-
nation

master
combi-
nation

DRA trueness
LDBA

large-
co-
safety
(13)

12 12 12 12 12 12 13 12

small-
co-
safety
(12)

12 12 12 12 12 12 12 12

small-
p-co-
safety
(12)

12 12 12 12 12 12 12 11

large-
safety
(13)

9 12 12 12 12 12 13 9

small-
safety
(12)

12 12 12 12 12 12 12 12

small-
p-
safety
(12)

12 12 12 12 12 12 12 10

large
(15)

11 14 13 13 12 14 11 7

small
(15)

12 14 15 15 15 15 15 10

lilydemo
(9)

5 5 4 5 6 5 4 5

ltl2dba
(8)

2 2 3 2 3 3 5 1

ltl2dpa
(11)

3 6 6 6 6 6 6 1

Overall
(132)

102 113 113 113 114 115 115 89

Table 4.21: Number of games solved correctly by the different approaches. We consider
a game to be solved optimally, if there is a winning strategy and the heuristic
maps all reachable states to edges in the winning strategy. For all SVMs an
additional obligation set check was performed.
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State 1:
Master: ϕ
M1
M2: s = (¬acc ∧G¬acc ∧Xq ∧
XX¬q ∧G(p ∨XXq) ∧G(¬p ∨
XX¬q))

State 2:
Master: ϕ
M1
M2: s = (¬acc ∧G¬acc ∧ (p ∨
XXq) ∧ (¬p ∨XX¬q) ∧G(p ∨
XXq) ∧G(¬p ∨XX¬q))

State 3:
Master: ϕ
M1
M2: s = (q ∧ ¬acc ∧ G¬acc ∧
X¬q∧(p∨XXq)∧(¬p∨XX¬q)∧
G(p ∨XXq) ∧G(¬p ∨XX¬q))

acc, 2, s

¬acc, 3, w

Figure 4.4: This is part of a game generated from ((G(F((p) ↔ (X(X(q)))))) ↔
(G(F(acc)))) with environment propositions {p, q} and system propositions
{acc}. The monitor M1 is not affected by the choice of the system player.
The rounded edges indicate an environment state, again.

State 1:
Master: ϕ
M1: s = true, cs = true, Index
= 0
M2: s = (¬acc ∧G¬acc ∧Xq ∧
XX¬q ∧G(p ∨XXq) ∧G(¬p ∨
XX¬q))

State 2:
Master: ϕ
M1: s = true, cs = ψ, Index =
0
M2: s = (¬acc ∧G¬acc ∧ (p ∨
XXq) ∧ (¬p ∨XX¬q) ∧G(p ∨
XXq) ∧G(¬p ∨XX¬q))

State 3:
Master: ϕ
M1: s = true, cs = Facc, Index
= -1
M2: s = (q ∧ ¬acc ∧ G¬acc ∧
X¬q∧(p∨XXq)∧(¬p∨XX¬q)∧
G(p ∨XXq) ∧G(¬p ∨XX¬q))

¬acc, 1, s

acc, 1, w

Figure 4.5: This is part of a game generated from ((G(F((p) ↔ (X(X(q)))))) ↔
(G(F(acc)))) with environment propositions {p, q} and system propositions
{acc}.

64



5 Future Work

This chapter contains suggestions for future work. First of all, the problematic states
from the last chapter can be considered. Here, it might be possible, to add new features
to avoid such cases. Furthermore, one can improve the implementation, such that reap-
pearing states with a X operator are noticed as well.

Additional features might also be helpful for safety formulas and the safety formulas
within a monitor. In this thesis, the only feature focusing on not failing a formula is
the one based on the fail set. These information are also important for the combined
features, which appear to be promising.

A different direction is, to combine different SVMs. One could for example use Platt
scaling [21] to compare the values of the SVMs. This could be used for states of class
2. Here, SVMs for class 1 and 3 lead to better results than one trained on states of
class 2. Using Platt scaling, one could compare the other two SVMs and pick the better
suggestion.

Another point is, that the advice of the SVM depends on the ordering of the edges. If
several edges have the same confidence value, the first edge is returned. This makes the
analysis of the results more complicated. A way around that could either be to order
the edges in Java or to make the choice of the SVM unique, e.g. by expanding edges
and using predictions on the successor states until a difference is found.
The strategy iteration also depends on the ordering of the states and edges. As al-

ready stated, the results obtained in this thesis might not be completely recomputable,
because the strategy iteration might return different strategies. Finding an ordering of
the edges could help here, as well.

We also want to point out, that the used metric in this thesis does not totally reflect
the quality of the initial strategy. We use the percentage of winning states mapped to a
wrong edge. However, there might be winning states, which are nearly never visited by
a winning strategy starting at the initial node. These states are still considered in our
results. One could try to find a different metric to avoid this.
In his unpublished work, Backs suggested a metric, which computes a distance from

the initial strategy computed by the SVM to the optimal strategy returned by a strategy
iteration algorithm starting at the given initial strategy.
To do so, the metric starts with the initial state and adds it to the list of reachable

states. For each state in this list, one compares the initial strategy with the winning
strategy. If they agree, the metric moves to the successor state. This is a node controlled
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by the environment player due to the structure of the game, so there is no strategy
computed on that state and the edge chosen in this state is not predictable. Because of
that, all successors of the environment node are added to the queue of reachable states.
Then the metric proceeds with the next state in the list.
If the initial strategy and the winning strategy return different edges, the metric counts

this as wrong and increases the distance counter by 1. Afterwards, the heuristic, e.g.
a SVM, responsible for the initial strategy is asked to choose between all edges of the
winning strategy for the state and pick one. Using this edge, the metric proceeds as
before.
There are only the above described cases, because a heuristic like the SVM only returns

one edge for each state, even though there could be more edges in a winning strategy. If
a heuristic is indifferent between two edges, it returns the first one.
When we applied this metric, we realized that the results vary widely, even if one of

the pre-computed games is used. The reason is that the implementation uses sets in Java
to store the edges. A set does not guarantee that its values will always be returned in
the same order. Since the SVM depends on the ordering of the edges, if it is indifferent
between two edges, this can influence the results.
However, it might still be worth consideration to improve on the metric.

Furthermore, the strategy iteration algorithm we used, removes cycles from the initial
strategy before starting. This can lead to edges of the initial strategy not being part of
the computed winning strategy, even though in theory, there is a winning strategy con-
taining them. These edges will then be considered as wrong. One could try to overcome
this by computing more than one winning strategy and compare the initial strategy re-
turned from the SVM with all of them in order to find the optimal strategy closest to
the initial one.

In consideration of the runtime, the improvement of the obligation set check or the
introduction of new heuristics like that to avoid sending a request is also be plausible.

Another approach could be, to use a different translation. We suspect, that for the
translation using DRA as intermediate step, it is hard to find features relating to the
monitors and the progress of them, because most information is hidden in the priority of
an edge and not as accessible as it is in the translation we used. Still, it is a possibility to
compute the average of some features over all the monitors. Another translation worth
consideration is the symmetric translation described in [9] [7].
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6 Conclusion

We presented different approaches to improve the results of the SVM developed in [1]
for predicting winning edges in parity games resulting from LTL synthesis. We used the
translation from LTL to DPA with an intermediate LDBA.
In comparison tho the SVM suggested in [1], when applied on the translation using a

LDBA as intermediate step, our approaches improve the number of games solved by the
initial strategy obtained form the SVM and reduce the number of winning states mapped
to an edge not in the winning strategy. The combined features for safety and co-safety
formulas of the monitor, as well as the progress features and the additional obligation
set check proofed to be helpful. The last one reduced the run time significantly. The
separation of the training data increased the number of winning states mapped to a
winning edge for the class the SVM was trained on. In particular, the separation based
on the change in the master formula reduced the error and using the combination of
these SVMs we were able to combine the advantages of the individual SVMs.
However, our approaches cannot solve as many games obtained from safety and co-

safety formulas as the implementation of [1] applied to the translation with an inter-
mediate DRA . This approach also leads to better initial strategies for the class ltl2dba.
Our presented SVMs, on the other hand, result in better initial strategies for the class
of large games.
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